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ABSTRACT

For functions f,g: w1 — wi, where wj is the first uncountable cardinal,
we write that f <« g if and only if {£ € w1 : f(§) > g(£)} is finite. We
prove the consistency of the existence of a well-ordered increasing «-chain
of length wa, solving a problem of A. Hajnal. The methods previously
developed by us involve forcing with side conditions in morasses which is
a variation on Todorcevic’s forcing with models as side conditions. The
paper is self-contained and requires from the reader knowledge of Kunen’s
textbook and some basic experience with proper forcing and elementary
submodels.

1. Introduction

It is natural to consider generalizations of standard orders in p(w) or w* modulo
finite sets. One natural way is to consider similar orders in p(k) or £ modulo sets
of cardinality smaller than x. This usually leads to similar diagonal or forcing
constructions as far as the question of the existence of well-ordered chains is
concerned.

Another way is to look at orders modulo finite sets. Let us look at a few
definitions in the case of kK = w; beyond which we do not stray in this paper.
F C [w1]“* is called strongly almost disjoint if anb is finite for each a,b € F.
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A similar definition holds for strongly almost disjoint family of functions from
w@t, We say that {X, : @ < A\} C [w1]“? is a strong chain of type A whenever
X» — Xp is finite and X3 — X, is uncountable for a < 8 < A. For orders in w}"?
there are several natural definitions. If f, g € Wi, we may consider sets

“opo? = {€: 1(E) = (6},

“>10="{: F(€) > g(&)}-

We say that f « g if and only if both =¢, and >y, are finite and we say that
f <* g if and only if > 4 is finite. Clearly one could also consider orders whose
definitions mention countable sets. We will not do this in this paper.

Let us mention a few results about the existence of some families. Baumgartner
([B1]) has proved that there is a c.c.c. forcing which adds a strongly almost
disjoint family in [w;]“* of cardinality wp. It also follows from his results that
arbitrarily large strongly almost disjoint families in [w;]“* consistently exist.

Zapletal ([Z]) proved that it is consistent that arbitrarily large strongly almost
disjoint families live in w*?, and he used Todorcevié’s result ([T4]) to note that
the existence of a c.c.c. forcing adding strongly almost disjoint family in w*! of
size we is equivalent to the failure of Chang’s conjecture.

In paper [Ko2], we proved that Chang’s conjecture implies the nonexistence of
strong chains of type ws in [w;]“?. This result implies that if Chang’s Conjecture
is consistent, then there is a model of ZFC in which there is a strongly almost
disjoint family in [w;]“? of size wy but where strong chains of length we do not
exist.

We also proved in [Ko2] that such strong chains consistently exist, and for
this we used a c.c.c. forcing constructed with the help of Todoréevié’s p-function
which incorporates Jensen’s O, principle (see [T2]). Note that strong chains
give rise to <*-chains in wi” by taking the characteristic functions.

In this paper we go further and we prove the following

THEOREM 1.1: It is consistent that there exists a < -chain of type ws.

This answers a question of A. Hajnal, we thank S. Todoréevié¢ for communicating
this question to us. For this we do not use a c.c.c. forcing, and we prove that
such chains cannot be added from, e.g., L by a c.c.c. forcing. Namely we have
the following;:

THEOREM 1.2: Assume CH. There is no forcing P which satisfies the c.c.c. such
that in V¥ there is a <-chain of type ws.
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Proof: Let C = (fa : @ < wy) be the P-names for the elements of the chain.
Using CH find M < H(ws) such that |M| =w;, M Nwy = a¢ € wy, C € M and
[M]* C M. In particular we have w; C M and cf(0) = w;.

By induction on £ < w; we construct strictly increasing (8¢ : £ < w) C wy,
(g€ <w))Caand (de:§<wi) Cwi, (pe:€<wi)CPand (Fg:€<w)C
[w1]<¥ such that:

1) V0 < € <wi PIFVn <€ fao(Bn) +de < falBn), foe (Ba),

2) V€ <wi pe I falBe) = fao(Be) + de,

3) ¥ < wi pe Ik {8+ fug (B) > falB)} € F.

Suppose we are done with 1), 2), 3) for all n < £. Let us construct B¢, o, de,
pe, Fe. By the c.c.c. of P, there is ¥ < w; such that

PIF{B: fao(B) > fa(B)} € #.

Pick any B¢ > By,7 for n < £ Let d¢ be the least countable ordinal such that
there is p € P such that pIF fo(B¢) = fao(B¢) + d¢. This implies that

LIF fa(Be) > faolBe) + de.

Using w1, [M]¥ C M we have (d, : n < §) and (8, : n < §) in M, so by the
elementarity and the inductive assumption, there is ag € M, ag > oy for n < €
such that

V<€ 1IF for(By) = faolBn) + dy.

Let pe < p and F¢ € [w]<“ be such that 3) is satisfied. This completes the
construction.

W.l.o.g. we can assume that F¢’s form a A-system with root A € [w,]<“. By
thinning out we can w.l.o.g. assume that 8, € F¢ for n < £ < w. Using the
c.c.c. for P, find n < £ < wy such that there is ¢ € P with ¢ < p,, p.. We have

12 gl fa(Br) > fao(By) +dy,
Py 2> ql- fa(ﬂn) = fao(:BTl) + dn-
So we may conclude by 3) that
pe>ql- By € F,
a contradiction. |

Using the fact that <*-chains were added in [Ko2] by a c.c.c. forcing over some
models of CH and using Theorem 1.1, we obtain:
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THEOREM 1.3: It is consistent that there is a <*-chain of type w, (or equivalently
a strong chain in (P(w)/Fin,C*)) but there is no <-chain of type wy.

Our chain of functions is naturally bounded by one function. This is related to
the weak Chang’s Conjecture (see e.g. [DL]) and recent results of Laver ([L]) on
the impossibility of adding «-dominating functions without collapsing cardinals.

The forcing techniques we use here are the fusion of techniques from [Ko2] and
[Ko3]. Note that, e.g., CH implies the nonexistence of strongly almost disjoint
families or strong chains etc., because they yield objects of size wy within [w].

All these results suggest the development of cardinal invariants of wj” or [w;]“
in the spirit of cardinal invariants p, t,b,0, etc. A thrilling flavour of this theory
would be the link of the new cardinal invariants with set-theoretic principles
of various consistency strength. As in the case of the strong chains in [w]*?,
one can wonder if long «-chains may give rise to interesting combinatorial or
topological constructions which exist in the case of chains of various kinds in the
usual orders on [w]* or w*; see e.g. [T3], [vD], [N], [Sch]. Note here that strongly
almost disjoint families have been used in Boolean algebras or topology; see, e.g.,
[BS] or [R].

The paper is organized as follows. In section 2 we outline facts about
Velleman’s simplified morasses which are used in the following sections. We
look at the morasses in question as families living in [w]* and so all the “morass
structure” can be expressed in the intuitive language of relations € and C. This
approach, due to Velleman, we believe, practically makes Velleman’s morasses an
object as simple and natural as the ordinals.

In section 3, we outline the idea of the method of forcing with side conditions
in morasses. In section 4, we perform the main forcing construction.

The notation and terminology is fairly standard and follow [K]| and [B2]; in
particular we use [A]* for the family of all subsets of X of cardinalities . [, 3) and
(a, B] denote the intervals with respect to the usual order on ordinals whenever
o, B are ordinals. ordtp(X) denotes the ordertype of the set of ordinals X. H{(k)
denotes the collection of all sets of hereditary cardinality less than x.

2. Facts about Velleman’s simplified morasses

In the definition below, we will use the following notation: F|X =
{YeF: YCX}and X <Y if and only if a < g for all ordinals o € X
and SeY.

Definition 2.1 ([V1, V2]): Let & be a regular cardinal. A simplified (x, 1)-morass
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is a family F C [s1]<%(= {X C &t : |X| < k}) which satisfies the following
conditions.

1) F is well-founded with respect to inclusion.

2) F is locally small, i.e., VX € F, |F|X| < k.

3) F is homogenous, i.e., if X,Y € F, rank(X) = rank(Y) = a, then X,Y
have the same order type (denoted 6,) and if fxy is the unique order preserving
mapping from X onto Y, then F|Y = {f"(Z): Z € F|X}.

4) F is directed, i.e.,, VX, Y € FIZ ¢ F s.t. X,Y C Z.

5) F is locally almost directed, i.e.,

a) F|X is directed or

b) 3 Xy, X5 € F s.t. rank(X;) =rank(X,) & X = X1 x X»
where X = X; %+ Xg means that X = X U Xy, X1NXy < X7 - Xy <
Xo— Xy, FIX = FIXi UF|XaU{X1,X5}.

6) F covers kT, i.e., JF =k"t.

If VX € F (rank(X) # 0 = X = |JF|X), then we say that F is a neat
simplified (x, 1)-morass.

Thus, a (k, 1)-morass is in particular a directed set of size k™ with initial frag-
ments of cardinalities less than k. The morasses were introduced by R. Jensen
(see [D]). Their intention is to provide an order along which inductive construc-
tions of directed systems of structures can be carried out. In some situation we
encounter problems with handling initial fragments of constructions if they have
size . In the language of [T2], a morass can be named a stepping-up tool; it
enables us to step-up properties of , obtained by the usual induction, to s,
since the initial fragments of the constructions are of sizes less than k. In the
above sense every well-founded directed set of size x* with initial fragments of
sizes less than k is a stepping-up tool. Additional strength and the essence of a
morass as well as other nontrivial stepping-up frameworks is hidden in coherence
properties of the framework.

The existence of a morass is a principle with an enormous variety of conse-
quences (see [Ka] for classical “non-generic” ones), such as the existence of a
k-Kurepa tree or a x*-Aronszajn tree, often a k*-Souslin tree, weak O,. Actu-
ally, D. Velleman has proved that the existence of a (x,1)-morass is equivalent
to a a forcing axiom for a certain wide class of forcings (see [V2]).

In this note we will need several properties of Velleman’s simplified morasses.
For the convenience of the reader let us prove them within the formalism which
we are using.
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THE MAIN LEMMA 2.2 (implicit in [V1] and {V2]): Let F be a (&, 1)-morass.
Let X,Y € F, rank(X) =rank(Y),a € XNY. Then XNa=Y Na.

Proof: By induction on rank(Z) such that X,Y C Z € F. If 5 a) holds for F|Z,
then 377 C Z such that X,Y C Z; C Z, so by the inductive hypothesis we are
done.

If 5b) holds, ie., Z = Z; * Z3, so say X C Z;, Y C Z, (otherwise we are
done by the inductive hypothesis), then we have a € Z; N Z;, since a € X NY.
Consider f” z, z,(X) C Z»; then by homogeneity rank(f” z, z,(X)) = rank(X) =
rank(Y). We know also that & € f” z, z,(X), since by 5b) and the homogeneity
f2z,,2,1Z1 N Z3 is an identity. Now, by the inductive hypothesis for Z,, we obtain
that 7z, z,(X)Na =Y Na, but again since fz,,z,|Z1 N Zs = Idz,nz,, we have
z.z,(X)Na=XNa,soYNa=XNa. |

DENsITY LEMMA 2.3 ([V2]): Let F be a (k,1)-morass. Then the following
conditions are satisfied:

a) VY € F VX € (FIY) Vrank(X) < a < rank(Y) 3Z € F rank(Z) = q,
XCzcCy.

This implies that ht(F) < k, since F is locally small.

b) VX € F Va < ht(F)[rank(X) < a = 3Z € F(rank(Z) = o, X C Z)].

Proof: First we prove part b). Fix X € F, take a < ht(F) and take Y € F
of minimal rank such that X C Y, rank(Y) > a. There is such a Y, since F
is directed (take any element Y’ € F, rank(Y’) > o and find Y € F such that
X,Y'CY).

If rank(Y) = a we are done. We will prove that rank(Y) > o give rise to a
contradiction. We apply 5) of definition 1.1 to Y.

If F]Y is directed, then there is Z € F|Y, rank(Z) = a as rank(Y) > o.
Take Z’' € F|Y such that X, Z C Z’; now rank(Z’) > a and this contradicts the
minimality of the rank of Y.

If Y =Y, Y3, then rank(Y) = rank(Y;) + 1, so rank(Y;) > a and X € F|Y; or
X € F|Yz. This also contradicts the minimality of the rank of Y. This completes
the proof of part b).

Fix o < ht(F), X,Y € F and X C Y such that rank(X) < a < rank(Y).
Using part b), find Z;,Z; € F such that X C Z; C Z, and rank(Z;) = o
and rank(Z;) = rank(Y). Consider fz,y; we get fz,y(X) C fz,v(Z1) and
fz,v(Z1) € F and rank(fz,v(Z1) = c. It is enough to prove that fz,y(X) = X,
ie, fz,y(e) = afor all o’s in X. But if « € X and o € Z; NY, the main
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lemma implies that ordtp(aN Z3) = ordtp(aNY) as fz,y is order preserving, so
fz,y(a) =a. |

Definition 2.4: Let F be a (k,1)-morass. Let a € k*. The sequence (F¢(a))e<x
is called the a-sequence (with respect to F) iff for all £ € k we have F¢(a) =
X¢ N o, where X, € F is such that rank(X¢) = €, a € X, if there exists such
an X¢ and otherwise F¢(a) =0

LEMMA 2.5: Let F be a (k,1)-morass. Let o € k%, then the a-sequence is a
uniquely defined non-decreasing (continuous if F is neat) sequence in [a]<*, with
its union equal to o.

Proof: The uniqueness follows from the main lemma. Now let £ < & < k.
If F¢e(a) # 0, then by the density lemma there is Z € F of rank &’ such that
Fe(a) € Z and the main lemma implies that Z Na = Fe (), so Fer (@) 2 Fela).
Directedness and covering of k* imply that the union is equal to a. |

Note that in particular a (k, 1)-morass is a cofinal family F in [x*]<* which is
a union of at most k many subfamilies F, for & < « (i.e., F, consists of elements
of rank @) such that for every two f, f' € Fy wehave fNf' < f—f f'—f by
the main lemma.

Note that the families F, cannot be A-systems, i.e., have the property that
there is A, € [k*]<* such that for each f, f’ € F, we have A, = f N f'. This
follows from a general fact that no regular A can carry a cofinal family that is a
union of less than A A-systems. The proof of this fact goes as follows: Suppose
F = Ua <xFa, where each F, is a A-system with a root A,. Find a bound
d < Aofall A,’. Now, § +1 belongs to at most one element of each F,. Take £ a
bound for this family. Now there is no d € F which contains é + 1,£€ + 1, hence
F is not cofinal. Note that for A singular the situation is opposite.

Note that there is no family F C [A]<* satisfying Definition 2.1 for A > «*.
To see this, suppose that A > k% and consider a x*-sequence, as defined in
Definition 2.4; by Lemma 2.5 it covers x*. But &% is regular, so it cannot be
covered by this sequence. In [Kol] we have generalized the notion of a simplified
morass to the notion of a (x, A)-semimorass which is a family in [\]<* and exists
consistently for any cardinal A bigger than .

In this paper we will be interested just in the case of k = wy, thus our morasses
will be subfamilies of [wo]“. We will, moreover, require that the morass we will
be denoting by F is a stationary coding set (see [Zw]). This means that F is a
stationary subset of [ws]“ and that there is a one-to-one function ¢: F — wy such



296 P. KOSZMIDER Isr. J. Math.

that
VX,YEF XCY =¢(X)eY.

The forcing proof of the existence of neat morasses that are stationary coding
sets which is based on a proof of Velleman from [V2] can be obtained from the
corresponding proof for semimorasses in [Kol] (Theorem 3, Section 2). Let’s
note two simple facts about stationary coding sets which we learned from S.
Todoréevié.

FACT 2.6 (FOLKLORE): Suppose that F C [w2]“ is a stationary coding set and
FeM~<H(ws), Ml=w, MNwy e F. f X € F and X C M, then X € M.

Proof: Suppose X € Fand X C M. As F € M < H(ws), we have that M
thinks that F is a stationary coding set, so there is ¢: F — wy witnessing this fact
in M. In particular a = ¢(X) € M Nwsy, so M thinks that ¢7!(a) is a countable
subset of wa, hence X € M N [wy]* as required.

FACT 2.7 (FOLKLORE): Supposethat F € M < H(ws), |[M|=w, X = MNw; €
F. Then rank(X) = M Nw;.

Proof: Put rank(X) = 4. If § € M, then we would have in M an element ¥ of
F of rank 4 and this would give rise by homogeneity to an isomorphism between
F|Y and F|X which would contradict well-foundedness of F.

In M there are all ordinals less than 4 and so there are also elements of F of
all ranks less than §. They are included in M Nw, = X, so rank(X) is at least 4.

The fact below is crucial in our method of forcing with side condition in
morasses which we introduced in [Ko3] and which is outlined in the context
of this paper in the following section.

FACT 2.8: Suppose that F C [wp]“ is a stationary coding set and F € M <
H(ws), M| =w, MNw; = Xo € F. Let Y € F, rank(Y) < M Nw; = 4. Then
there is Z(Y) € M such that

1) Y N Xo C Z(Y),

2) rank(Z(Y)) = rank(Y).

Note that by the main lemma, it follows that Z(Y') is an end-extension of
XoNY.

Proof: By the density lemma, find Y’ O Y, Y’ € F such that rank(Y’) =
rank(Xp) = 6. Now use the isomorphism fyx, to find a copy Z(Y) of Y below
Xp. Note that Y N Xy C Y'N Xy and fyx, is constant on Y' N Xy, s0 Y N Xy =
YNM C Z(Y). Now use Fact 2.6 to conclude that Z(Y) € F|X, implies
Z(Y)e M.
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Now we will consider some notions of distance. For every a; < a; < w; such
that there is X € F, rank(X) < 8 and a1, € X we can define Dg(a1,as) by
putting it equal to ordtp(X N (a1, 02]). This “S-distance” behaves very nicely
and was used in a diguise provided by the p-function in [Ko2]. It turns out that
for the purposes of this paper we need a more subtle and complex notion which
is still a version of the above notion.

Definition 2.9: Suppose A € [F]<“ and 8 € w;. Then we say that a; < ay < w
are B-connected in A if and only if there is a sequence W1, ..., W}, of elements of
A of ranks less than or equal to § and if there is a sequence of ordinals 7;,..., v
such that a1 =71 < --- < 7% < ag and such that a; = v € Wy, oy € Wy, and
v € W;NW,;_y for 1 < i < k. We will say that « is S-connected in A with itself.

If o € wy, then by Ag(a) we denote the set X Na for X € A of maximal rank
less than or equal to 3 such that oo € X. If there is no such X, we put Ag(a) = 0.

FACT 2.10: Suppose that A € [F|<¥, 8 < w; and oy,02,03 € wo;
a1 < g < (3.

a) If a1, a2 are B-connected in A and ag, a3 are 8-connected in A, then oy, a3
are (3-connected in A as well.

b) If a1, a3 are S-connected in A and a3, a3 are 3-connected in A, then oy, s
are -connected in A as well.

Proof: a) follows directly from the definition of being S-connected in A.

For b) let Wy,..., Wk, m1,...,7 witness the fact that a;,as are S-connected
in Aandlet W{,...,W/},",...,7, witness the fact that oy, a3 are S-connected
in A. The proof of the lemma is by induction on k + m.

Let Z be one of the elements Wy, or W/, whichever has biggest rank, or any
of these elements if they have the same ranks. By the main lemma we have that
Vs Yrm € Z-

CASE 1: 4, = 7,,. Then the fact follows directly from the inductive assumption.

CASE 20 v <4 Wi,..o . We1,Z, m1,. .., witness the fact that a; and
., are (-connected in A (and this takes care of the case when a2 = v},) and
Wi, s Wi, Y-+ » Vim—1 Witness the fact that aq,7,, are f-connected in A.
So we can use the inductive assumption to conclude that oy, ay are S-connected
in A.

CASE 3: v, <k W{,....,W} _1,Z, Vi,---,7, Witness the fact that oy and
v, are J-connected in A and Wh,...,Wg_1, 11,...,7k—1 Witness the fact that
a1, are B-connected in A. So we can use the inductive assumption to conclude
that a;, as are 3-connected in A.
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Definition 2.11: Suppose A € [F|<¥, 8 < w; and oy, a3 € wy; a3 < az. We
define da g(a1,a2) by induction, ie., given that dag(',a) are defined for all
a < ag we define d4 g(, a2) by induction on a; < ap by

da,p(a1, az) = sup{da g(a, ) + ordtp(Ag(az) — ) :
ay <7 < ag;v € Ag(ag); a1, are B-connected in A}.

FACT 2.12: Suppose that A € [F]<¥, 8 < w; and a1,z € ws; @1 < a. Then
daplon,az) # 0 if and only if a;, ay are S-connected in A.

Proof: Note that if a;,as are ordinals which are not G-connected, then by Fact
2.10 a) the set in the definition of d4 g(a1, ) is empty. Conversely, if a;, s
are [-connected in A, then there is v € Ag(az) such that oy < v < g and
a1, are B-connected in A and v € Ag(az). Then ordtp(Ag(az) —7) # 0 and so
dA,g(al,ag) 75 0.

FACT 2.13:  Supposethat A € [F]<¥, 8 < w; and ay, 02,03 € wy; a1 < ag < a3

and ordinals a;, ag are B-connected in A and also ordinals ag, as are 3-connected
in A. Then the following hold:

1) If o < oy and there is X € A, rank(X) < 3; o/, a2 € X, then
ordtp(Ag(az) — ') < dag(d,a2).
2) For any Y € A such that o/,a2 € Y, &' < a3 and rank(Y) < 8 we have

ordtp(Y N[d,a2)) < dapld, ).

3) daglar, a3) = daglor, a2) +daglaz, as).
Proof: For 1) put v = o/ in the definition of d4 g(a’,a). For 2) note that
Y Nlo/,a2) C Ag(az) — ¢ and use 1).

3) is proved by induction on a3. Suppose 3) holds for all triples of ordinals
whose maximal ordinal is less than a3. Before moving to the main body of the
proof of the inductive step of 3) we prove the following two claims:

CLAIM 1: Supposea; <y < v2 and 71,72 € Ag(as) and 1,7, are $-connected
in A and ai,7y, are 3-connected in A. Then

da,pla,m) + ordtp(Ag(as) —m) < daglaa,v2) + ordtp(Ag(as) — ¥2).
Proof:
da,p(e1,m) + ordtp(Ag(asz) — m)
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= dap(a1,m) + ordtp(Ag(az) N [11,72)) + ordtp(Ag(as) N vz, a3))
(by 2))
<daglor,m) + dag(n, ) + ordtp(Ag(as) — 712),

which completes the proof of Claim 1 by the inductive assumption.

CLAIM 2: Suppose ay <7y < o3 and «y € Ag(as). Then v,y are B-connected in
A and v, a; are B3-connected in A.

Proof: 1t follows from 2.10 and the assumptions about a;, g, @3 and 7.
So now, let’s go to the main body of the inductive step for 3).
By Definition 2.11 we have

dA,g(al, 043) = Sup{dAyp(Otl,’)') + OT'dtp(Ag(Oz;;) - 'y) :
ar < v < az;y € Ag(asz); a1, are B-connected in A}.

As ag, a3 are B-connected in A so let Wy,..., Wy, 71,...,v witness this fact.
Then
a1 <k < az; vk € Aglas)

and oy, are f-connected in A by Claim 2. This together with Claim 1 means
that actually

da,p(o,@s3) = sup{da,g(a1,7) + ordtp(Ap(as) ~7) :
az < v < as;y € Ag(as); a1, are S-connected in A}

Now using Claim 2 and the fact that a;,as are S-connected in A we conclude
that actually

da,p(ou, as) = sup{da,g(a1,7) + ordtp(As(az) — ) :
o2 <7 < az;y € Ag(as); oz, are S-connected in A}.

Now use the inductive assumption to get

dA,ﬂ(al”Y) = dA,ﬁ(ala a2) + dA,ﬂ(a% ’7)
and also use the fact that sup(a + A) = o +sup A (observe that sup(A + &) may
not be equal to sup A + a) and conclude that
daplon, a3) = daplon, 02) + sup{da,paz,7) + ordip(As(as) —7) :
ap < v < as;y € Ag(as); ag,y are f-connected in A}
= dA,ﬁ(al, az) + dA,ﬂ(a% 03),
which completes the proof of the fact.



300 P. KOSZMIDER Isr. J. Math.

Definition 2.14: Suppose 8 € w;. We call £ € wy a F-number if and only if for
every countable M < H(ws) such that F € M, we have that 8 € M, implies
e M.

Remark 2.15: Note that S-numbers are bounded in w;, form an initial segment
of wy, and finite sums of S-numbers are B-numbers, if 8’ < §; then §'-numbers
are J-numbers. Also 83, which is the order type of any set of F of rank 3, is a
G-number which is well defined by the homogeneity of F.

FACT 2.16: For every f < w; and A € [F|<“ and every a1 < az < wg the
number d g(o1, az) is a f-number.

Proof: First note that using the main lemma it is easy to conclude that if o, g
are S-connected in some A then a; € Fp(az). Now is easy to prove by induction
that

da,p(on, az) < ordtp(Fp(oz) N[0, 02)) < 5.

The last number is a S-number by Remark 2.15. This completes the proof of the
fact.

Definition 2.17: Suppose §; < & < w; and § < w;; we write £; <P & if and
only if £ + 7 < & for any S-number 1 < w;.

3. Forcing with side-conditions in morasses

In [Ko3] we introduced a version of Todorcevi¢’s method of forcing with models
as side conditions which utilizes elements of (semi)morasses as side conditions.
In fact a natural way of looking at morasses is to see them as families similar to
{M Nwy: M < H(ws)} with some extra properties (which actually make it im-
possible for a morass to include a club set unlike the set above). To use elements
of a morass F as side conditions means to use forcings P whose conditions are of
the form (p, A) where p is a finite condition of a natural forcing adding the struc-
ture in question and A is a finite subset of F. The order is given by the forcing
order on the first coordinate and the inverse inclusion on the second coordinate.
In addition, we require the existence of some natural projections of p onto the
elements of A as a part of the definition of the forcing notion.

In the case of forcings described above, special combinatorial properties of
morasses allow us to perform many manouvers with ease and also the defini-
tions are simplified. This method seems equivalent to the variant of Todoréevié¢’s
method when one employs matrices of models (see [T1] section 4 for an example
with detailed definitions). Instead of a more complicated forcing that adds a



Vol. 118, 2000 STRONG CHAINS OF UNCOUNTABLE FUNCTIONS 301

version of a morass and the structure in question “in one blow” we factor this
forcing into one adding a morass (or we actually just assume its existence) and
another simple forcing employing the morass. The price we need to pay for this
convenience is that P is not proper (unlike Todorcevié’s forcings) but only F-
proper, i.e., there is a club C C [ws]* such that for models M < H(ws3) such that
M € FNC and p € PN M, there are (P, M)-generic conditions stronger than p.
As F may be assumed to be stationary, F-properness implies the preservation of
wy (proof like for proper forcings, see [B2]). The preservation of bigger cardinals
follows from the wy-chain condition.

To illustrate the method and show the crucial use of combinatorial properties
of a morass which is a stationary coding set, let us consider the following forc-
ing notion P whose conditions are of the form (ap, fp, Ap) where a, € [wa]<¥,
for ap = w1, Ay € [F]<¥ and we require that fp(a) < rank(X) whenever
a € a,NX for X € A,. We consider P with the coordinatewise inverse in-
clusion as the order.

P adds an f: wys — w; which is unbounded on any uncountable subset of ws
belonging to the ground model. Note that such functions cannot be added by
any c.c.c. forcing and, on the other hand, our P in a sense approximates f with
finite approximations. As a warming up argument before the main argument of
this paper in the next section let us prove the following facts.

Fact 3.1: P is an F-proper notion of forcing and hence preserves w;.

Proof: Let M < H(ws) be such that Xo = M Nwp € F, P,F € M. By the
stationarity of F we can easily find such an M. Let pp € M. We will show that
there is p < pp which is (P, M)-generic.

Define p as follows: a, = apy, fp = fpor Ap = Ap, U {Xg}. Clearly p € P.

Now to prove that p is a (P, M)-generic, consider ¢ < p and a dense D € M.
We may w.l.o.g. assume that g € D.

Define g|M = (a, N M, fy| M, A; N M). Introduce notation § = M Nw; =
rank(M Nws) (the second equality follows from Fact 2.7).

Note that AgNM = Agm = {X € A;: X C Xo}. This follows from the fact
that F is a stationary coding set, i.e., Fact 2.6.

Now we would like to reflect ¢ to M, i.e., find s < ¢|M, s € M, having some
properties of q (in particular s € D) and use these properties to prove that s and
q are compatible, which would finish the proof of the fact.

Condition s will satisfy a formula ¢(c) with parameters from M. We will
obtain the existence of s by the elementarity of M and the fact that ¢(q) holds
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in H(ws). Let us write parts of the conjuction which forms ¢. Before this, we
need to define some parameters from M.

Definition 3.2:
a) Let X1,...,X;m and m € w be such that {X € A, : rank(X) < 8} =
(X1, Xm}.
b) Let ¥; = X; N Xy. (Note that Y; € M for i € [m|. This follows from Lemma
2.8 and the main Lemma.)
c) ¢(o) is the conjunction of the following formulas i), ii), iii):
i)oeD.
ii) o < q|M.
ili) There is Z € F such that
1) For every i € [m] we have Y; C Z,
2) Aq|M - Z,
3) (ag —agqum)NZ = 0.

FACT 3.3:  ¢(q) holds in H(ws).

Proof: Clauses i) and ii) are clear and iii) is witnessed by Z = Xp.

Now we continuue the proof of the fact that P is F-proper. Let s be such
a condition of P that M satisfies ¢(s) (usually ¢ is much more complicated).
We will note that s and ¢ are compatible by constructing their amalgamation r.
Let ar = asUay, fr = fsU fq, Ar = A; U A;. The only nontrivial condition
which we need to check is whether f.(a) < rank(X) whenever a € a, N X for
X € A,. So consider « € a, and X € A,. There are two nontrivial cases: first, if
a € a; — as and X € A, which cannot take place because A; C M and aq — as
is disjoint from M; the second case, if a € a; — aq and X € A;. Note that the
fact that s satisfies clause iii) implies that this can happen only if rank(X) > 9,
but f,(a) < & because s € M, which completes the proof.

FACT 3.4: P is an wq-cc notion of forcing.

Proof: Let (pg : £ < wg) be a sequence of conditions of P. We will show that
there are two compatible conditions among the elements of this sequence.

We may w.l.o.g. assume that for every { < wy the set A, has a maximal
element denoted by X,. This follows from the directedness of 7. We may also
w.l.o.g. assume that all X¢’s have the same rank a < w; and that erp Xe, lifts
up to an isomorphism between pe, and pe, for every &,€2 € wp. This follows
from the homogeneity and local smallness of F as well as from the fact that ap,’s
and A, ’s are finite. Now we claim that actually any two conditions from the
sequence are compatible. Consider two of them p,q with maximal elements X,
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and X, of A, and Ag, respectively. Put a, = ap U ag, fr = f; U f, and finally
put A, = A, UA,.

Now it is enough to check that it is a condition which follows from the
isomorphism of p and g.

As a corollary we obtain the following

FAcT 3.5: P preserves cardinals.

4. Forcing construction

F will denote an (w;,1)-morass which is a stationary coding set.

Definition 4.1: 'We define forcing notion P. Conditions p of P are of the form
p = (a’pa bpa Fp, AP),

where 0 € a, € [w2]<¥, b, € [W1]<, 4Ap € [FI<¥, Fp = {f : a € ap}, and
fg: by = w1, and for each B € b, we have f3(8) = 0 and

*) VB € by Va € ap f(B) is a f-number;

**) VB € by Vo < ;01,2 € ay, if da, g(o,a2) # 0, then

5 2(8) 2 5 (B) + da, plar, az),

p < gifand only if ap 2 aq, bp 2 by, Ap 2 Aq, f5 2 fg for all a € ag; and

**X)VB € by — by Yoy < agjon,02 € f2(B) > f52(6).

Recall Shelah’s notion of (P, M)-generic condition (see [B2]): p € P is called a
(P, M)-generic if and only if for every D € M which is dense in P we have that
DN M is predense below p. Most of this section is devoted to the proof of the
following

STATEMENT 4.2: Suppose P,F,p € M; M < H(w3); M Nwe € F. Then for any
p € PN M the condition py = (ap, by, Fp, Ap U {M Nwy}) is a (P, M)-generic
which extends p.

Proof: Take q < pg, D € M dense in P. We may w.l.o.g. assume that ¢ € D.
Define g|M = (a," M, b,N M, {f2|M : a € a,N M}, A;NM). Introduce notation
§ = M Nw; = rank(M Nwy) (the second equality follows from Fact 2.7).

Xo = M Nwy € F (the membership follows from the assumption).

Note that A,NM = Agy = {X € A4;: X € M, X C Xo}. This follows from
the fact that F is a stationary coding set, i.e., Fact 2.6. Also as *) is satisfied for
g € P, we may conclude that f;’iM(,B) €M, for B, € M.
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Clearly by the above we have that g/M € M. Now let us see that ¢|M € P.
For this, the only nontrivial clause of Definition 4.1 which needs to be checked is
**). If B € bym, 1,02 € agnr and da,,, g1, a) # 0, then da, gloy, az) # 0
by Fact 2.12. Now as Agar C Ag we have (Agar)s(a) C (Aq)g(a), so it is easy to
prove by induction that da,,,s(c1, @2) < da (1, a2) and consequently that

fau(B) = 12 (B) 2 [ (B) + da,p(e1, @2)
= fau(B) +dagplon, 02) = f1,(8) + dag, 6(0n, @2),

which completes the proof that **) holds for ¢|M and so that q|M is a condition
of P.

Now we would like to reflect ¢ to M, i.e., find s < ¢g|M, s € M, having some
properties of ¢ (in particular s € D), and use these properties to prove that s
and ¢ are compatible, which would finish the proof of the statement.

Condition s will satisfy a formula ¢(c) with parameters from M. We will
obtain the existence of s by the elementarity of M and the fact that ¢(q) holds
in H(ws). Let us write parts of the conjuction which form ¢. Before this we need
to define some parameters from M.

Definition 4.3:
a) Let X;,...,X» and m € w be such that {X € A, : rank(X) < &} =
{X1,..., Xm}.
b) Let r; = rank(X;) for i € [m)].
c) Let Y; = X; N X,. (Note that Y; € M for ¢ € [m]. This follows from Lemma
2.8 and the main Lemma.)
d) Let By = max{ry,...,rm,max(bg ) + 1}.
e) Let {&,...,&} = (ag — M) N (sup M Nwy).
f) Let n; = min(M — &;) for i € [l].
g) Let v; = max({sup(Y; Nn;) : ¢ € [m]} for j € [l]. (Note that as ¥;’s are
countable in H(w3) and they belong to M, they are countable in M, and so v;’s
are in M and they are smaller than corresponding 7;’s.)
h) ¢(o) is the conjunction of the following formulas i), ii), iii):
i) o € D;
i) o < q|M;
iii) there is Z € A,,rank(Z) > f such that:
1) for every X € A, such that rank(X) < f thereisi € [m| XNZ =Y;,
2) for every i € [m] there is X € A, such that rank(X) < fpand XNZ =Y},
3) Qq|M - Z ,
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4) (as —agqm)NZ =9,
5) (by — bgiar) N (rank(Z)) = 0,
6) for all j € [I] we have v;,n; € Z and there is (; € Z such that

v; < <mj

and
0 <P ordtp(Z N [v4,¢;))-

FACT 4.4:  ¢(q) holds in H(ws).

Proof: Clause i) is clear from our assumption on q.

To see ii) first note that we have already proved that ¢|M is a condition of P.
We need to check only ***). So let 8 € by — by, 1,2 € agps- As Xo € Ay
and ¢ < §, by **) for ¢ we conclude from Fact 2.13 2) that

f;?w(ﬂ) > f;i}\l(ﬁ) + ordtp(Xo N[0y, az)) > ;}w(ﬂ)

as required in **¥),

For iii) we claim that Z = X, witnesses iii) for g. The subclauses 1)-5) are
clear. To see that 6) holds, take a € ay — aga = a4 — M such that a < sup(M).
Then there is j € [{] such that o = §;. M N7; is bounded in 7; by §; and so there
is no cofinal in 7; countable sequence included in M, hence n; has uncountable
cofinality in M. Also v; € M and v < n;. So take, e.g., {; = v; + o/ where o
is any countable ordinal in M which is bigger than all Sp-numbers (the existence
of such a number follows from the elementarity of M).

So now, using the elementarity of M, find s such that s € M and ¢(s) holds in
M. Now our aim is to prove that s and q are compatible in P. So we need to define
r < s,q. We put a, = a;Uag, b, = byUbs, A, = AUA,, f2(B) = f&(B) for a € a,,
B € by, fr(B) = f3(B) for a € aq, B € by (these agree on the common part qM)
and we need to define f&(B) for (@, B) € (as —aq) X (bg —bs)U(aq —as) x (bs — bg)
which is the only freedom we have in defining the extension r.

For a € a; — aq, B € by — b, we define f*(0) separately for each 8 € by — b,
and by induction. Suppose that we have already defined it for (a, — a4) N« for
o € a; — a4; then we put

D1)  f2(B) = max{fZ (B) +da,p(c/,@) : da,p(c’,0) £ 0, o’ €a,Na}.

Note that by Definition 4.1, we have always o’ = 0 € a, and also 0,a € X and
s0 da, g(a’,a) > 0 for some & € a.Na.
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For a € a4 — a5, B € b, — by we define f*(B) separately for each 8 € b — b,
and by induction. Suppose that we have already defined it for (ay — a,) N a for
@ € aq—a,; then we put f(8) to be the maximum of the following two numbers:

D2) ma,x{ff‘,(ﬂ) +da, p(d @) : da, pcd/,a) #0, & € a, Na},

D3) max{f (8)+1:a' € a;Na}.

Now we need to prove that r is a condition of P which extends both s and q.
The only nontrivial clauses of Definition 4.1 to be checked are *), **) and ***).
In the sequel we will refer to these clauses as simply *), **) and ***). Before
moving to the following parts of the proof of Statement 4.2, we will prove some
lemmas.

LEMMA 4.5: Suppose a; < ag < wy; B < wy;0a1,09,8 € M. Then o1,ap are
B-connected in A, if and only if a;,aq are $-connected in A,.

Proof: Let Wi,...,Wg, m,...,7 be as in Definition 2.9, witnessing the fact
that o,y are B-connected in A,. Since az € M and § € M Nwy € F, by the
main lemma and the fact that s satisfies clause 4.3 h) iii) 1)-2) of ¢, we conclude
that all +;’s are in M and there are V; € A, such that V; Ny, = W; N+; and
v € V; and rank(V;) = rank(W;). It follows that oy, o, are G-connected in A,.
The opposite implication is clear as A, C A,.

LEMMA 4.6.: Suppose oy < a2 < wo; € by Nby, a2 € (wa — M)U Z. Then
oy, 0z are 3-connected in A, if and only if o, g are B-connected in A,.

Proof: Let Wy,...,Wg, 711,...,7 be as in Definition 2.9, witnessing the fact
that oy, 09 are fB-connected in A,. If there is no ¢ such that «; € M, then all
W;’s are not in M and so are in A4, which proves that a;,a; are S-connected
in Ag. If ap € Z, then an argument similar to the one from the proof of 4.5
works. Otherwise take maximal ¢ such that v; € M and assume a; € Z. By the
maximality and the fact that as & M, W; € A; — A, for j > 4. So, we conlude
that v; € Z. By the main lemma and the fact that rank(W;) < 8 € byNb, < B <
rank(Z) (see 4.3 d)) we conclude that all y,’s for j < 4 are in Z. By clause 4.3
h) iii), 1)-2) this means that there are V; € A, such that V; Nvy; = W; N+y; and
7v; € V; and rank(V;) = rank(W;). This implies that c; and oy are §-connected
in Ag.
Again as A; C A,, the opposite implication is clear.
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LEMMA 4.7: Suppose a; < as < wy; § < 8 < wy. Then ay, 0y are S-connected
in Aq if and only if oy, oz are B-connected in A,.

Proof: Let Wi,...,Wk, m1,...,7 be as in Definition 2.9, witnessing the fact
that a1, ay are f-connected in A,. As s € M, we have W; C Xo = M Nwy € A,
for W; € A,. Thus by replacing W;’s from A, — A; = A, — A, by X, we obtain
that a;,ay are f-connected in A,.

Again as A4 C A, the opposite implication is clear.

LEMMA 4.8: Suppose a < we; 8 <wy;a, 3 € M. Then

(4r)p(a) = (As)s(a).

Proof (see Definition 2.9): 1f X € A, — A, and rank(X) < 4, then rank(X) < fo.
If o € X, then by 4.3 h) iii) 1)-2), thereis Y € A, such that YNM = XNM and
so Y Na = X Na by the main lemma. This proves that (A.)g(a) C (A4s)g(a).
The other inclusion is clear.

LEMMA 4.9: Suppose a < ws; 3 € bgNbs and a € (wy — M)U Z. Then

(Ar)s(a) = (Ag)s(a).

Proof: Note that 3 < By (by 4.3 d) and by 4.3 h) iii) 1)-2)), for each X € A, of
rank less than or equal to 3 such that @ € X (in thiscase @ € Z, as A; € M) there
is Y € A, of the same rank such that o € Y, and hence (4,)g(a) C (As)g(a).
The other inclusion is clear.

LEMMA 4.10: Suppose a < ws;8 < 8 <w;. Then

(Ar)s(e) = (Ag)s(a).

Proof: Note that any X € A, ~ A, is in A, and so is included in X, € A, and
so (A;)g(a) C (Aq)s(@). The other inclusion is clear.

LEMMA 4.11: Suppose oy < ag < wo; 8 < wy;01,az,3 € M. Then

dAr;ﬁ(al’ a2) = dA,,ﬁ(ala a2)'

Proof: By induction on as. Suppose the equality is true for pairs of ordinals
from wo with the bigger ordinal less than ap. Note that by Lemma 4.8 and the
assumptions we have that (A,)g(a2) C M, so by Lemmas 4.8 and 4.5 the set

{v:7€(A,)glaz) & 1,7 are S-connected in A4,}
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is equal to the set
{7v:7 € (As)p(az) & aq,7 are S-connected in Ag}.

Also for 4’s from the above set by the inductive assumption and Lemma 4.8 we
have

da, p(01,7) + ordtp((Ar)g(az) — 1) = da,,s(e1,7) + ordtp((As)s(az) — 7).
Now using Definition 2.9 we conclude the statement of the lemma.
LEMMA 4.12: Suppose a1 < g < we; B € bgMbs; a2 € (wa — M)U Z. Then
da,plar,az) = da, plar, az).

Proof: By induction on az. Suppose the lemma is true for pairs of ordinals from
wq with the bigger ordinal less than @;. Note that (A,)s(ag) C (w2 — MU Z,
s0 by Lemmas 4.9 and 4.6 the set

{v:7€ (Ar)p(a2) & o1, are B-connected in A}
is equal to the set
{7 :7 € (Ag)slaz) & 1,7 are B-connected in A,}.

Also for 4’s from the above set, by the inductive assumption and Lemma 4.9 we
have

da, pla1,7) +ordtp((Ar)p(ae) — 7) = da,pla1,7) + ordtp((Ag)gaz) — 7).
Now using Definition 2.9 we conclude the statement of the lemma.
LEMMA 4.13: Suppose o1 < ag <wsg; 0 < S <wi. Then
da, plor,az) = da, plon, 0z).

Proof: By induction on as. Suppose the equality is true for pairs of ordinals
from wy with the bigger ordinal less than ap. Note that by Lemmas 4.10 and 4.7
the set

{7:v € (Ar)s(az) & a1, are B-connected in A,}
is equal to the set
{7:7 € (Ag)p(az) & a1, are B-connected in A,}.

Also for «’s from the above set by the inductive assumption and Lemma 4.10 we
have

da, s(01,7) + ordtp((Ar)p(e2) — 1) = da,p(1,7) + ordip((Ag)s(az) — 7).

Now using Definition 2.9 we conclude the statement of the lemma.
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LEMMA 4.14: Suppose a; < az <wsz. If 3 < 6 and a; € aq — a, and o € a,,
then oy, ay are not B-connected in A,.

Proof: Suppose the opposite. Let Wy, ..., Wk, 11,...,7 be as in Definition 2.9,
witnessing the fact that a1, ay are B-connected in A,.. It follows from the main
lemma that oy € (F)g(a2) € M. But this contradicts the fact that oy & M.

LEMMA 4.15: Suppose o1 < g < wp. If f € byNby and oy € as — a4 and
a2 € aq — a5, then o,y are not B-connected in A,.

Proof: Suppose the opposite. Let Wi,..., Wk, 79, .- ., be as in Definition 2.9,
witnessing the fact that o, as are f-connected in A,. Note that if v; € M, then
Xi ¢ M and so X; € A; — A, and consequently rank(X;) < (.

Take maximal 7 such that v; € M. Asay =, € M and ay € M, we have that
such an ¢ exists and X; ¢ M as X; contains the next element in the sequence
Yy, Vk, @2 after ;. Now this implies that «v; € Z, which in turn implies by the
main lemma. that all v; for j < i are in Z as well. In particular «; € Z, which
contradicts the choice of @; and 4.3 h) iii) 4).

LEMMA 4.16: Suppose that a3 < a3 < wg, 0,02 € M and 8 < 6. Then
da, (o1, a2) = da, g, (01, @2).

Proof: First note as in the proof of Lemma 4.14 that if o; < v and a3, are
B-connected then v € M. Secondly, note that this implies that if W1,..., Wy,
0, .- - » Yk are as in Definition 2.9, witnessing the fact that a,,~y are 8-connected
in A,, then all v/s are not in M and all Xs are not in M and consequently
rank(X;) < Bo for all ¢ < k by 4.3 a), b), d). In other words ay,7 are (-
connected in A, if and only if oy, are Fy-connected in A,. Now the proof is by
induction on a ¢ M. Using Definition 2.11 we have

da, plar, ) = sup{da, g(a1,7) + ordtp((Ar)s(az) — 7) :
a; < v < az;y € (Ar)(02); a1, are f-connected in A}

Using the inductive assumption and the fact that (A,)g(a2) = (A,)g, (a2) (this
follows again from 4.3 a), b), d)) this number is clearly equal to
sup{da,,g,(a1,7) + ordip((Ar)g,(az) —7) :
a1 €y <ag;y € (Ar)s(ar); 01,7 are fo-connected in 4,},

which is dAr,ﬁo (al,az).
Now we are ready to start proving the main part of 4.2. So let’s start with
*). It follows from the definition of f5(8)’s (see D1), D2), D3)) and the fact
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that da, g(c/, ) is a B-number (see Fact 2.15) and finite sums of B-numbers are
B-numbers (see Remark 2.16).

So now let us check **). For this we will need to consider many cases.
CASE 1: B € by Nb;.

Case 1.1: B € byNb and ay, a2 € a; or a1, 0p € aq.
This follows from the fact that s and ¢ are conditions of P and from Lemmas
4.11 and 4.12.

CASE 1.2: [ € bnNbsand a; € a,—ay, a2 € ag—a, Or 1 € G4—0q, 2 € Gs—0y-
This follows from Lemmas 4.14 and 4.15.

CAsE 2: B €b;— b,

CASE 2.1: B € by ~by, on < ap; 1,2 € as.
This follows from Lemma 4.11 and the fact that s is a condition of P.

CASE 2.2: [ €bs—by, o1 < ag; a3 € ag — as.
It follows from the construction (see D2)) of f&2().

CaSE 2.3: [ €bs — by, 01 < 035 a1 € ag — 5,0 € Q.
This follows from Lemma 4.14.

CAse 3: B €by—bs.

CASE 3.1: B € by —b,, 01 < ap; a1,02 € ag.
This follows from Lemma 4.13 and the fact that g is a condition of P.

CaASE 3.2: B € bq —bs, 01 < (2} 2 € Gy — Gg.
This case follows from the construction of f22(3).

CaSE 3.3: B €by—bs, y < ag; a1 €as—ay; 02 € aq.
Suppose that we have proved **) for all & € (aqUa;s) Ny and az and 8. We
may w.l.o.g. assume that o; and ay are S-connected in A,.

Note that f21(f) is defined according to the construction (see D1)), i.e.,

o1(8) = max{f% (8) + da, p(@' 1) : da, g(c’ 1) #0: & € a, Nt}

Note that the above set of a’s is nonempty as 0 is its member since 0,a; € Xp.
So let ' be the ordinal giving the maximal value which gave f1(G). By the
inductive assumption we have

£22(8) 2 £2(B) + da, ple’, a2).
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As o and a3 as well as & and oy are S-connected in A, it follows from Lemma
2.13 (3) that
da,p(c, 1) + da, plon,02) = da, p(e, a2)
and so )
F72(0) 2 £ (B) + da,p(@, a2)

= f7(8) +da, pc 1) +da, pla1, 02)

= 7 (B) + da, pla1, a2)
as required in **).

So now we need to check **¥*),

CASE 11 B €by—b,, g < ag; a1,00 € a,.
Note that in this case we have a;, @y € Xp and so ***) follows from **).

CASE 2: B € by~ by, o1 < a3; 01,02 € a.

CASE 2.1: B € bs— by, 02 €ag—a,, 01 < 3.
This case follows directly from the construction of f22(8) (see D3)).

CASE 2.2: B €b; ~by, ap €agNa, and a; € a; Nag and oy < o2,
Note that then oy,a; € Z and Z € A, and rank(Z) < B (by 4.3 5)) as well as
ay, 0 € a,, and so as in case 1, we conclude ***) from **) for s.

CasE 2.3: fB€b; —by, a1 < ag, g €agNa, and ay € ag — as.
For this case, we will prove by induction on og € ag, ag < ; that

Fro(B) <P f72(B)

(see Definition 2.17). Certainly for ag = a; this will be sufficient for proving the
case.

Let j € [I} (see Definitions 4.3 €)) be such that a; = §;. It exists because
a1 < az € M. Then clearly v; < {; < &; < n; < az (see 4.3 f), g), h) iii) 6)).

Suppose we are done below ay.

If g € ayNa, C Z, then note that by the definition of v; we have og < v}, as
ag < a1, and so by Fact 2.13, 2) and Definition 4.3 h) iii) 6) we have

da, plao, a2) > ordtp(Z N {ag, az)) > ordtp(Z N [vj,(;)) >Po 0,

Now use **) for r and Lemma 4.11 to conclude that f2°(8) <P f22(B).

Now assume that ap € a, — as. In this case f&°() has been defined according
to the construction, i.e., D2), D3), f&°(B) is the maximum of the following two
numbers:

max{f% (B) + da, (! o) : da, sl a0) £ 0: &/ € ar N g},
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max{f® (8) +1: o’ € a;Na}.

If this is the second number, the inductive assumption and Remark 2.15 imply
that fo(8) <P f22.

So we will assume that f°(0) is the first and not the second of the two above
numbers. Note that as 0 € a, Nag C Xp, the fact that the first number is bigger
than the second means that the first one is a nonzero number and in particular,
by Fact 2.12, that o' and o are 3-connected in A,.

First assume that o € M i.e, o’ ¢ a,; then by Lemma 4.16 we conclude that
da, p(d/, ) equals da, g, (¢, ap) and by Fact 2.16 this number is a fy-number,
so the inductive assumption implies f2o(8) <P f22(g).

Now assume that o’ € a,. Let vy be the minimal ordinal such that o’ < 9 <
ag, Yo € M and both o', 4o and o, ap are S-connected in A,.. The existence of
such a 7g follows from the fact that o has the above property.

By Fact 2.13 3) and Lemma 4.16 we have that

+) da, p(e/,00) =da, g(a',10) +da, s(%, 00) = da, gle/,y0)+da, g (Y0, 20).

Now Lemma 2.16 implies that the ordinal da, g, (Y0, 0) is a fp-number. So we
will focus on estimating d4,. g(¢’, Y0).
By Definitions 2.9, 2.11 and the definition of Gy (see 4.3 a), b), d)) we have

da, s(d, ) < sup{da,s(ca,7) + 85, :

o <y < ;7 € (Ar)g(10); ¢,y are B-connected in A,}

where 0g, is the order type of elements of F of rank 3.

Now note that by the minimality of 7o we have that whenever 7y is such that
o < v < v;7 € (Ar)sg(); o,y are B-connected in Ay, we have that v € M
(remember that by now we are assuming that o' € M, so case o’ = ¥ follows)
and actually y € Y for this Y € A, — A, that (A,)s() = (4r)g,(70) =Y No.
It follows that for such a v we have v < v; < (; and v € Z and in particular
v € Ag(v;). It follows that o,v; are fB-connected in A, (by 4.3 h) iii) 5)) and
that

++)  da,pld!,v;) +6p, = sup{da, g(a,7) + ordtp((4,)s(v;) =) :

o <y <vj;v€ (Ar)p(v)); o,y are B-connected in A,} + 63, > da, s(a’, 7).
Now, as vj < {j < ay are all in Z, by Fact 2.13 and Lemma 4.3 h) iii) 6) we have

+++) da, p(Vj,a2) > da, p(v;, () > ordtp(Z N [v;,¢;)) > 0.
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Since o, v; are f-connected as noted above and +), ++) and +++) hold we
obtain that

da, p( a2) = da, 8(e/,v5) + da, p(vj,a2) > da, s(c,v5),

da, p(c',a0) < da, (e, v;) + 6, + da,p (Y0, 20),
which completes the proof of the case and Statement 4.2.
FACT 4.17: P preserves w.

Proof: 1t follows from Statement 4.2 as F-proper forcings preserve wy, the proof
of this fact is the same as for proper forcings; see, e.g., [B2].

FACT 4.18: P satisfies the ws-c.c.

Proof: Let (pe : £ < wg) be a sequence of conditions of P. We will show that
there are two compatible conditions among the elements of this sequence.

We may w.l.o.g. assume that for every { < wp the set Ap, has a maximal
element denoted by X¢. This follows from the directedness of . We may also
w.l.o.g. assume that all X¢'s have the same rank o < wi and that fx, x,, lifts
up to an isomorphism between pg, and pg, for every £1,& € wo. This follows
from the homogeneity and local smallness of F as well as from the fact that the
ap,’s, bp,’s, Fy’s and Ap,’s are finite. We can also assume that all by, ’s are the
same and are equal to b.

Now we claim that actually any two conditions from the sequence are compat-
ible. Consider two of them p, ¢ with maximal elements X, and X, of A, and A,
respectively. Put a, = apUag, b, = b, F, = F;UF} and finally put A, = A,UA,.

Now it is enough to check that r is a condition which follows from the isomor-
phism of p and g. For this note that unless {a;,az2) € [a,]? is already in one of
the sets [ap)? or [a,)?, it is not B-connected in A, for any 3 € b. It follows that
**) is trivially satisfied. Also ***) holds trivially as b, = b, = b, = b.

FACT 4.19: P preserves cardinals.

FACT 4.20: For all @ € wy and all 8 <€ wy the following sets are dense in P,

D, = {p € P : max(ap) > a, max(by) > f}.

Proof: To make the check that the extension is in P a triviality, given ¢ € P
and @ € wy and B € w; define p as follows: a, = aq U {ao}, by = by U {Bo},
Ap, = Ay where g > a is such that og > sup(lJ Ap) and By > B is such that
B > max({rank(X) : X € Ap}, max(b,)). Now define f,‘,‘l(ﬁ) for o/ € a4 so that
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**) and ***) are satisfied, which can be easily done by induction and making
sure that the appropriate values are fp-numbers; f°(5) can be arbitrary as long
as *) is satisfied.

This completes the proof of Theorem 1.1.

Remark 4.21: Note that it was in the proof of Case 2.3 of ***) that we essentially
needed the notion dg(ai, ) of S-distance between ),z € wy different than
ordtp(X N (a,p]) for X € F of rank B such that a;,a; € X. With the -
distance as above we could have dg(0,01) = dg(0,a2) and f,,(8) = f2(8) +
ds(0, a2), which by D2) would imply f*(8) > f22(8), which would give that r
is not an extension of q. Note that the distance as above may exist under CH (as
morasses which are stationary codings exist in L), so Theorem 1.2 explains why
the situation as above must occur. Actually, the proof of 1.2 is derived from the
above counterexample to 2.3.

It would be interesting to axiomatize the other distance that we use as well as
associated colorings of pairs from wy into w; colors. This could lead to obtaining
stronger properties than these usually listed for p (see [T2]).
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