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ABSTRACT 

For functions f,g: W1 -"4" COl, where COl is the first uncountable cardinal, 

we write tha t  f << g if and only if {4 E col : f(~) _~ g(~)} is finite. We 

prove the consistency of the existence of a well-ordered increasing <<-chain 

of length w2, solving a problem of A. Hajnal. The methods previously 
developed by us involve forcing with side conditions in morasses which is 
a variation on Todorcevic's forcing with models as side conditions. The 
paper is self-contained and requires from the reader knowledge of Kunen's 
textbook and some basic experience with proper forcing and elementary 
submodels. 

1. I n t r o d u c t i o n  

I t  is n a t u r a l  to  consider  genera l iza t ions  of s t a n d a r d  orders  in p(w) or w ~ modu lo  

finite sets. One n a t u r a l  way is to  consider  s imi lar  orders  in p ( a )  or a~ modu lo  sets  

of ca rd ina l i ty  smal le r  t han  a. This  usual ly  leads to s imilar  d iagonal  or forcing 

cons t ruc t ions  as far as the  quest ion of the  existence of wel l -ordered chains is 

concerned.  

A n o t h e r  way is to  look a t  orders  modulo  finite sets. Let  us look at  a few 

defini t ions in the  case of a = wl beyond  which we do not  s t ray  in th is  paper .  

~" C_ [wl] ~1 is cal led s t r o n g l y  a l m o s t  d i s j o i n t  if a M b is finite for each a, b E 5 r .  
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A similar definition holds for strongly almost disjoint family of functions from 

w ~ . We say that  {X~ : a </~} _C [Wl] 0:~ is a s t r o n g  cha in  of type A whenever 

Xa - X/~ is finite and X~ - Xa  is uncountable for a < f~ </~. For orders in w~ ~ 

there are several natural definitions. If f ,  g E w~ 1 , we may consider sets 

" --__f,g " - -  { ~ :  f(~) = g ( ~ ) } ,  

" >f,g= "{~: f(~) > g(~)}. 

We say that  f << g if and only if both ---f,g and >f,g are finite and we say that  

f <* g if and only if >f,g is finite. Clearly one could also consider orders whose 

definitions mention countable sets. We will not do this in this paper. 

Let us mention a few results about the existence of some families. Baumgartner  

([B1]) has proved that there is a c.c.c, forcing which adds a strongly almost 

disjoint family in [Wl] ~1 of cardinality w2. It also follows from his results that  

arbitrarily large strongly almost disjoint families in IT1] ":1 consistently exist. 

Zapletal ([Z]) proved that it is consistent that  arbitrarily large strongly almost 

disjoint families live in w 0:1 , and he used Todor~evid's result (IT4]) to note that  

the existence of a c.c.c, forcing adding strongly almost disjoint family in w 0:1 of 

size w2 is equivalent to the failure of Chang's conjecture. 

In paper [Ko2], we proved that  Chang's conjecture implies the nonexistence of 

strong chains of type w2 in [wl] ~1 . This result implies that if Chang's Conjecture 

is consistent, then there is a model of ZFC in which there is a strongly almost 

disjoint family in [Wl] ~ of size w2 but where strong chains of length w2 do not 

exist. 

We also proved in [Ko2] that  such strong chains consistently exist, and for 

this we used a c.c.c, forcing constructed with the help of Todor~evid's p-function 

which incorporates Jensen's Vl~ principle (see IT2]). Note that  strong chains 

give rise to <*-chains in co~ '~ by taking the characteristic functions. 

In this paper we go further and we prove the following 

THEOREM 1.1: It  is consistent that there exists a <<-chain of  type co2. 

This answers a question of A. Hajnal, we thank S. Todor6evid for communicating 

this question to us. For this we do not use a c.c.c, forcing, and we prove that  

such chains cannot be added from, e.g., L by a c.c.c, forcing. Namely we have 

the following: 

THEOREM 1.2: Assume CH. There is no forcing P which satisfies the c.c.c, such 

that in V P there is a <<-chain of  type w2. 
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Proof: Let C = (]~ : a < w2) be the P-names for the elements of the chain. 

Using CH find M -< H(w3) such that IMI = oJ1, M Cl w2 = a E w2, C E M and 

[M] ~ C M. In particular we have wl C M and c f ( a )  = w 1. 

By induction on ~ < Wl we construct strictly increasing (j3 e : ~ < w) C wl, 

(Ol e : ~ < t~l) C O~ and (d e : ~ < Wl) C wl, (PC : ~ < Call) C P and (F e : ~ < wl) C 

[CVl] <~ such that: 

1) v0 < 4 < P <<_ 4 + 44 <_ 

3) V 4 < Wl Re [[- {Z: ~ , ( Z )  k ~ ( Z ) }  C Fe" 
Suppose we are done with 1), 2), 3) for all 77 < 4. Let us construct j3e, ae, de, 

PC, Fe. By the c.c.c, of P, there is 7 < Wl such that 

P IF {fl: Lo(/3) >_ ]~(/3)} C q. 

Pick any me > ~,,  7 for 77 < 4- Let d e be the least countable ordinal such that  

there is p �9 P such that p IF ]~(/~e) = ]~o (/~e) + de" This implies that 

1 IF )~(13e) k ]ao(13e) + de. 

Using wl, [M] ~ C_ M we have (d, : ~} <_ 4) and (/~ : 77 < 4) in M, so by the 

elementarity and the inductive assumption, there is a e E M, a e > a ,  for ~} < 4 

such that 

Let Pe <- P and F e C [wl] <w be such that 3) is satisfied. This completes the 

construction. 
W.l.o.g. we can assume that  Fe's form a A-system with root A �9 [wl] <~ By 

thinning out we can w.l.o.g, assume that /~n r Fe for ~/ < ~ < wx. Using the 

c.c.c, for P, find 77 < 4 < Wl such that there is q �9 P with q <__ P,7,Pe. We have 

1 > q IF ]~, (Z,) > ]~o(Z,) + d,, 

p ,  >__ q iF L ( Z , )  = ] ,o(Z,)  + d , .  

So we may conclude by 3) that  

pe >__ q e 

a contradiction. II 

Using the fact that  <*-chains were added in [Ko2] by a c.c.c, forcing over some 

models of CH and using Theorem 1.1, we obtain: 
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THEOREM 1.3: It is consistent that there is a <*-chain of type w2 (or equivalently 

a strong chain in (P(wl) /Fin ,  C_*)) but there is no <<-chain of type w2. 

Our chain of functions is naturally bounded by one function. This is related to 

the weak Chang's Conjecture (see e.g. [DL]) and recent results of Laver ([L]) on 

the impossibility of adding <<-dominating functions without collapsing cardinals. 

The forcing techniques we use here are the fusion of techniques from [Ko2] and 

[Ko3]. Note that, e.g., CH implies the nonexistence of strongly almost disjoint 

families or strong chains etc., because they yield objects of size w2 within [w]% 

All these results suggest the development of cardinal invariants of w~ 1 or [Wl] ~1 

in the spirit of cardinal invariants p, t, b, 0, etc. A thrilling flavour of this theory 

would be the link of the new cardinal invariants with set-theoretic principles 

of various consistency strength. As in the case of the strong chains in [vii ~1, 

one can wonder if long <<-chains may give rise to interesting combinatorial or 

topological constructions which exist in the case of chains of various kinds in the 

usual orders on [w] ~ or w~; see e.g. IT3], [vD], [N], [Sch]. Note here that strongly 

almost disjoint families have been used in Boolean algebras or topology; see, e.g., 

[BS] or [R]. 

The paper is organized as follows. In section 2 we outline facts about 

Velleman's simplified morasses which are used in the following sections. We 

look at the morasses in question as families living in [w2] ~ and so all the "morass 

structure" can be expressed in the intuitive language of relations E and C_. This 

approach, due to Velleman, we believe, practically makes Velleman's morasses an 

object as simple and natural as the ordinals. 

In section 3, we outline the idea of the method of forcing with side conditions 

in morasses. In section 4, we perform the main forcing construction. 

The notation and terminology is fairly standard and follow [K] and [B2]; in 

particular we use [A] ~ for the family of all subsets of A of cardinalities ~. [a, 13) and 

(a, 13] denote the intervals with respect to the usual order on ordinals whenever 

a, 13 are ordinals, ordtp(X) denotes the ordertype of the set of ordinals X. H(n) 

denotes the collection of all sets of hereditary cardinality less than ~. 

2. Facts  a b o u t  Ve l l eman's  simplif ied morasses  

In the definition below, we will use the following notation: ~'[X -- 

{Y E ~ :  Y c X} a n d X  < Y if and only if a < /3 for all o rd ina lsa  ~ X 

and 13 E Y. 

Definition 2.1 (IV1, V2]): Let ~ be a regular cardinal. A simplified (,~, 1)-morass 
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is a family ~ C_ [a+]<~(= {X C_ a+ : IX] < ~}) which satisfies the following 

conditions. 

1) ~" is well-founded with respect to inclusion. 

2) ~" is locally small, i.e., VX E .T, Ibv[X[ < ~. 

3) ~" is homogenous, i.e., if X, Y E ~', rank(X) = rank(Y) = a, then X, Y 

have the same order type (denoted 0~) and if f x v  is the unique order preserving 

mapping from X onto Y, then ~'[Y = { f " ( Z ) :  Z E br[X}. 

4) ~" is directed, i.e., VX, Y E ~" 3Z E ~" s.t. X,  Y C_ Z. 

5) 9 v is locally almost directed, i.e., 

a) .T[X is directed or 

b) 3 X x , X  2 E .~ 8.t. rank(X1) = rank(X2) • X = X 1 , X 2 

where X = X I * X 2  means that X = X I U X 2 ,  X1 MX2 < X1 - X 2  < 

x2 - x l ,   :lX = 7Ix1 uTIx2  u {Xx,X2}. 

6) 5 r covers a+, i.e., U 9r = a+" 

I f VX E 9 v (rank(X) ~ 0 ~ X = UbriX),  then we say that ~ ' i s  a n e a t  

simplified (~, 1)-morass. 

Thus, a (a, 1)-morass is in particular a directed set of size a+ with initial frag- 

ments of cardinalities less than a. The morasses were introduced by R. Jensen 

(see [D]). Their intention is to provide an order along which inductive construc- 

tions of directed systems of structures can be carried out. In some situation we 

encounter problems with handling initial fragments of constructions if they have 

size a. In the language of [T2], a morass can be named a stepping-up tool; it 

enables us to step-up properties of ~, obtained by the usual induction, to a+, 

since the initial fragments of the constructions are of sizes less than a. In the 

above sense every well-founded directed set of size a+ with initial fragments of 

sizes less than ~ is a stepping-up tool. Additional strength and the essence of a 

morass as well as other nontrivial stepping-up frameworks is hidden in coherence 
properties of the framework. 

The existence of a morass is a principle with an enormous variety of conse- 

quences (see [Ka] for classical "non-generic" ones), such as the existence of a 

a-Kurepa tree or a a+-Aronszajn tree, often a a+-Souslin tree, weak Vl~. Actu- 

ally, D. Velleman has proved that the existence of a (a, 1)-morass is equivalent 

to a a forcing axiom for a certain wide class of forcings (see [V2]). 

In this note we will need several properties of Velleman's simplified morasses. 

For the convenience of the reader let us prove them within the formalism which 

we are using. 
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THE MAIN LEMMA 2.2 (implicit in [Vl] and IV2]): Let ~" be a (n, 1)-morass. 

Let X, Y E ~', rank(X) = rank(Y), a E X M Y.  Then X M a = Y M a. 

Proof: By induction on rank(Z) such that X, Y C_ Z E ~'. If 5 a) holds for ~-[Z, 

then 3Z1 C Z such that  X, Y C_ Z1 C Z, so by the inductive hypothesis we are 

done. 

If 5b) holds, i.e., Z = Z1 * Z2, so say X C_ Z1, Y C_ Z2 (otherwise we are 

done by the inductive hypothesis), then we have a E Z1 M Z2, since a E X M Y. 

Consider f "  z,,z2 (X)  C Z2; then by homogeneity rank(f"zl,z2 (X)) = rank(X) = 

rank(Y). We know also that a E f"z , , z2  (X),  since by 5b) and the homogeneity 

fzl,z2 [Z1 M Z2 is an identity. Now, by the inductive hypothesis for Z2, we obtain 

that  f "  Zl,Z2 (X) M a = Y M a, but again since fzl,z2 [Z1 M Z2 = Idzlnz2, we have 

f "  Zl,Z~ (X) M a -- X M a, so Y M a = X M a. | 

DENSITY LEMMA 2.3 ([V2]): Let 3= be a (~, 1)-morass. Then the following 

conditions are satisfied: 

a) vY ~ ~ - v x  E (~'IY) Vrank(X) < a < rank(Y) 3Z E ~" rank(Z) = a,  

X C Z C Y .  

This implies that  ht(~)  _< ~, since ~" is locally small. 

b) VX E ~" Va < ht(:F)[rank(X) < a =~ 3Z E .T(rank(Z) = a, X C_ Z)]. 

Proof: First we prove part b). Fix X E 5 r ,  take a < ht(iT) and take Y E ~" 

of minimal rank such that  X C Y, rank(Y) > a. There is such a Y, since b r 

is directed (take any element Y' E ~', rank(Y') >_ a and find Y E 9 r such that  

X, Y' C_ Y). 

If rank(Y) = a we are done. We will prove that rank(Y) > a give rise to a 

contradiction. We apply 5) of definition 1.1 to Y. 

If ~ IY is directed, then there is Z E 9rl Y, rank(Z) = a as rank(Y) > a. 

Take Z'  E ~'lY such that  X, Z C_ Z'; now rank(Z')  > a and this contradicts the 

minimality of the rank of Y. 

If Y = Y1 * Y2, then rank(Y) = rank(Yi) + 1, so rank(Yi) > a and X E ~'[Y1 or 

X E ~'lY2. This also contradicts the minimality of the rank of Y. This completes 

the proof of part b). 

Fix a < ht(F),  X , Y  E Y and X C_ Y such that  rank(X) < a < rank(Y). 

Using part  b), find Z1,Z2 E ~" such that X C Z1 C_ Z2 and rank(Z1) = a 

and rank(Z2) -- rank(Y). Consider fz2Y; we get f z 2 y ( X )  C fz2y(Z1) and 

fz2y(Z1) E ~ and rank(fz2y(Z1) = a. It is enough to prove that  f z 2 y ( X )  = X ,  

i.e., f z~y(a)  = a for a l l a ' s i n X .  But i f a  E X a n d a  E Z 2 A Y ,  the main 
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lemma implies that  ordtp( a M Z2 ) = ordtp( a M Y)  as f z2Y is order preserving, so 

fz y(a) = a .  

Definition 2.4: Let Jr be a (,r 1)-morass. Let a E a+. The sequence (J-'~(a))~<~ 

is called the a-sequence (with respect to ~ )  iff for all ~ E ,~ we have 9v~(a) = 

X~ M a, where X~ E ~- is such that rank(Xr = ~, a E X~, if there exists such 

an X~ and otherwise ~ ( a )  = 

LEMMA 2.5: Let ~- be a (,~, 1)-morass. Let a E ~+, then the a-sequence is a 

uniquely de/~ned non-decreasing (continuous if J: is neat) sequence in [a] <~, with 

its union equal to a. 

Proo~ The uniqueness follows from the main lemma. Now let ~ < ~' < ~. 

If ~'r r 0, then by the density lemma there is Z E ~" of rank ~' such that 

.%'~(a) C_ Z and the main lemma implies that Z M a  -- ~'~,(a), so J-'~, (a) _D .~'~(a). 

Directedness and covering of ~+ imply that the union is equal to a. I 

Note that  in particular a (a, 1)-morass is a cofinal family ~" in [,r which is 

a union of at most a many subfamilies F'a for a < ,~ (i.e., 9va consists of elements 

of rank a) such that  for every two f,  f '  E F'~ we have f M f '  < f - f ' ,  f '  - f by 

the main lemma. 

Note that  the families ~'a cannot be A-systems, i.e., have the property that 

there is As  E [a+]<~ such that for each f ,  f '  E 5v~ we have A~ = f M f ' .  This 

follows from a general fact that  no regular A can carry a cofinal family that is a 

union of less than A A-systems. The proof of this fact goes as follows: Suppose 

= U~<~ 5ra, where each ~'a is a A-system with a root Aa. Find a bound 

5 < A of all Am'. Now, 5+  1 belongs to at most one element of each ~ .  Take ~ a 

bound for this family. Now there is no d E ~" which contains 5 + 1,~ + 1, hence 

is not cofinal. Note that  for A singular the situation is opposite. 

Note that  there is no family 3 ~ C_ [A] <~ satisfying Definition 2.1 for A > a+. 

To see this, suppose that  A > ,r and consider a ,r as defined in 

Definition 2.4; by Lemma 2.5 it covers ,r But a+ is regular, so it cannot be 

covered by this sequence. In [Kol] we have generalized the notion of a simplified 

morass to the notion of a (,r A)-semimorass which is a family in [A] <~ and exists 

consistently for any cardinal A bigger than a. 

In this paper we will be interested just in the case of ,r = wl, thus our morasses 

will be subfamilies of [w2] w. We will, moreover, require that  the morass we will 

be denoting by .T" is a stationary coding set (see [Zw]). This means that  ~ is a 

stationary subset of [w2] ~ and that there is a one-to-one function c: 3 c --+ w2 such 
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that  

VX, Y E J: X c Y ~ c(X) E Y. 

The forcing proof of the existence of neat morasses that  are stationary coding 

sets which is based on a proof of Velleman from IV2] can be obtained from the 

corresponding proof for semimorasses in [Kol] (Theorem 3, Section 2). Let 's  

note two simple facts about stationary coding sets which we learned from S. 

Todor~evid. 

FACT 2.6 (FOLKLORE): Suppose that  5 r C [o;2] ~ is a stationary coding set and 

~" E M -< H(o;3), IM[ = o;, M M o;2 E ~'. If  X E ~" and X c M, then X E M. 

Proof'. Suppose X E .T" and X C M. As 5 r E M -< H(o;3), we have that  M 

thinks that  ~" is a stationary coding set, so there is c: 9 r --+ o;2 witnessing this fact 

in M. In particular a = c(X)  E M M o;2, so M thinks that  c - l (a )  is a countable 

subset of o;2, hence X C M M [o;2] ~ as required. 

FACT 2.7 (FOLKLORE): Suppose that  :7: C M -~ H(o;3), [MI = o;, X = MMO;2 E 

5 r .  Then rank(X)  = M M o;1. 

Proo~ Put  rank(X)  = 5. If 5 E M, then we would have in M an element Y of 

~- of rank b and this would give rise by homogeneity to an isomorphism between 

5v[Y and 9v[X which would contradict well-foundedness of 5 r.  

In M there are all ordinals less than 5 and so there are also elements of 3 r of 

all ranks less than 5. They are included in M M o;2 = X,  so rank(X) is at least 5. 

The fact below is crucial in our method of forcing with side condition in 

morasses which we introduced in [Ko3] and which is outlined in the context 

of this paper  in the following section. 

FACT 2.8: Suppose that  5 r C_ [o;2] ~ is a stationary coding set and Y E M -< 

H(o;3), [M[ = o;, M M o;2 = X0 E 9 v. Let Y E ~', rank(Y) < M M wl = 5. Then 

there is Z ( Y )  E M such that  

I) Y n Zo c_ z(Y), 
2) rank(Z(Y)) = rank(Y). 

Note that by the main lemma, it follows that Z(Y) is an end-extension of 

XonY. 

Proof." By the density ]emma, find Y' _D Y, Y' E ~" such that rank(Y') = 

rank(Xo) -- ~. Now use the isomorphism J:Y'Xo to find a copy Z(Y) of Y below 

X0. Note that YMXo c_ Y'MXo and fY'xo is constant on Y'MXo, so YMXo = 
Y M M C_ Z(Y). Now use Fact 2.6 to conclude that Z(Y) E 9~IXo implies 

Z ( Y )  e M.  
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Now we will consider some notions of distance. For every a l  < a2 < w2 such 

that there is X E ~', rank(X) _< ~ and a l ,  a2 E X we can define D~(al ,  a2) by 

putting it equal to ordtp(X M (al ,a2]) .  This "fl-distance" behaves very nicely 

and was used in a diguise provided by the p-function in [K02]. It turns out that 

for the purposes of this paper we need a more subtle and complex notion which 

is still a version of the above notion. 

Definition 2.9: Suppose A E [~-]<w and j3 E Wl. Then we say that C~ 1 ( a 2 ( W 2 

are ~-connected in A if and only if there is a sequence W1, . . . ,  Wk of elements of 

A of ranks less than or equal to j3 and if there is a sequence of ordinals ")'1, �9 �9 �9 ")'k 

such that  a l  = ")'1 < "'" < "Yk < a2 and such that a l  = ")'1 E W1, a2 E Wk and 

"ri E Wi M Wi-1 for 1 < i ___ k. We will say that a is 13-connected in A with itself. 

If a E w2, then by A~(a) we denote the set X M a for X E A of maximal rank 

less than or equal to/3 such that a E X. If there is no such X, we put A~(a) = 0. 

FACT 2.10: Suppose that  A E [hr] <~, ~ < Wl and al,a2,a3 E w2; 

(~1 ~ 0~2 ( (~3. 

a) If a l ,  a2 are/3-connected in A and a2, a3 are j3-connected in A, then a l ,  a3 

are j3-connected in A as well. 

b) If a l ,  a3 are 13-connected in A and a2, a3 are fl-connected in A, then a l ,  a2 

are/3-connected in A as well. 

Proof: a) follows directly from the definition of being/~-connected in A. 

For b) let W1, . . . ,  Wk, "rl,.-., '~k witness the fact that a l ,  a3 are fl-connected 

in A and let W~, . . . ,  W~n, 7~ , . . . ,  ~fm witness the fact that a2, a3 are ~-connected 

in A. The proof of the lemma is by induction on k + m. 

Let Z be one of the elements Wk or W~ whichever has biggest rank, or any 

of these elements if they have the same ranks. By the main lemma we have that 

 k,y e z.  

CASE 1: ")'k = "r~. Then the fact follows directly from the inductive assumption. 

CASE 2: % < ~/~. W 1 , . . . , W k - I , Z ,  "rl,...,'rk witness the fact that  a l  and 

"),~ are ~-connected in A (and this takes care of the case when a2 = ")'~n) and 

W~, . . . ,  W'm_l, q'~,..., ')/m_l witness the fact that a2, 0"m are fl-connected in A. 

So we can use the inductive assumption to conclude that a l ,  or2 are ~-connected 

in A. 

CASE 3: q,~ < ~/k. W~, . . . ,  W~_I,  Z, -),~,...,-},~ witness the fact that  a2 and 

")'k are/3-connected in A and W1,. . .  ,Wk-1, 0'1,... ,q'k-1 witness the fact that 

a l ,  % are j3-connected in A. So we can use the inductive assumption to conclude 

that  a l ,  a2 are ~-connected in A. 
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Definition 2.11: Suppose A E [~']<~, /~ < wl and a l , a  2 E w2; a l  < a2 .  We 

define dA,~(az,a2) by induction, i.e., given that dA,~(',a) are defined for all 

a < a2 we define dA,B(ax, a2) by induction on a l  < a2 by 

dA,B(c~l, o~2) = sup{dA,B(OLx, 0') + ordtp( AB(o~2) - 0") : 

al  _< 0' < a2;0' E AB(a2);al,0" are/~-connected in A}. 

FACT 2.12: Suppose that A E [gr] <~, ~ < wz and a l , a 2  E w2; a l  < a2. Then 

dA,~(al, a2) # 0 if and only if Ol1, a2  are ~-connected in A. 

Proof: Note that if a l ,  a2 are ordinals which are not 13-connected, then by Fact 

2.10 a) the set in the definition of dA,~(al,a2) is empty. Conversely, if al ,a2 
are 13-connected in A, then there is 0' E A~(a2) such that a l  _< 0' < a2 and 

O~1,0' are 13-connected in A and 0' E A/~(a2). Then ordtp(A~(a2) -0") # 0 and so 

dA,~(al, a2) # 0. 

FACT 2.13: Suppose that  A E [~']<~, j3 < wl and al, a2, a3 E w2;al  < o~2 < ol3 

and ordinals a l ,  a2 are/%connected in A and also ordinals a2, a3 are ~-connected 

in A. Then the following hold: 

1) If a '  < a2 and there is X E A, rank(X) < ~3; a ' ,  a2 E X, then 

ordtp(A~(a2) - a') < dA,~(a', a2). 

2) For any Y E A such that  a', a2 E Y, a '  < a2 and rank(Y) _< fl we have 

ordtp(Y M [a', a2)) <_ dA,B(a', a2). 

3) dA,~(al, a3) ---- dA,~(al, a2) + dA,~(a2, a3). 

Proof." For 1) put 3, = cd in the definition of dA,~(oL, ~). For 2) note that  

Y M [a', a2) C_ A~(c~2) - a '  and use 1). 

3) is proved by induction on a3. Suppose 3) holds for all triples of ordinals 

whose maximal ordinal is less than ~a. Before moving to the main body of the 

proof of the inductive step of 3) we prove the following two claims: 

CLAIM 1: Suppose a l  _< 0'1 < 0'2 and 0'1,0'2 E A~(a3) and 0~1,0'1 8~re/3-connected 
in A and al,0'2 are/3-connected in A. Then 

dA,/3(al, 0'1) "4- ordtp(A~(a3) - 0'1) < dA,~(al, 0'2) -4- ordtp(A/3(a3) - 0'2). 

Proof: 

dA,~(al, 0'1) + ordtp(A~(a3) - 0'1) 
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= dA,~(C~l, '71) + ordtp(A~(a3) n ['71,'72)) + ordtp(A~(a3) N ['72, (~3)) 

(by 2)) 

<_ dA,~(al,~/1) + dA,~('71,'72) + ordtp(A~(a3) - "72), 

which completes the proof of Claim 1 by the inductive assumption. 

CLAIM 2: Suppose ~2 <_ 7 < ~3 and ~/ E A/~(o~3). Then '7,c~2 are/3-connected in 

A and '7, (~1 are H-connected in A. 

Proof: It follows from 2.10 and the assumptions about OLl,O~2,o~ 3 and '7. 

So now, let's go to the main body of the inductive step for 3). 

By Definition 2.11 we have 

dA,~(al, a3) = sup{dA,/~(Oll, '7) + ordtp(A~(c~3) - "7) : 

al  _< '7 < a3;'7 C A/~(a3); a1,'7 are H-connected in A}. 

As c~2, a3 are fl-connected in A so let W 1 , . . . ,  Wk, '71,...,'7k witness this fact. 

Then 

a l  <_ 'Tk < a3;'Tk E A~(a3) 

and a l ,  ~k are H-connected in A by Claim 2. This together with Claim 1 means 

that  actually 

dn,~(al,  a3) = sup{dA,~(al,'7) + ordtp(A~(a3) - "7) : 

a2 <_ '7 < a3;'7 E A~(a3);al , '7 are j3-connected in A}. 

Now using Claim 2 and the fact that a l ,  a2 are H-connected in A we conclude 

that actually 

dA,~(al,  a3) = sup{dA,~(al,  "7) + ordtp(A~(a3) - '7): 

a2 <_ '7 < a3; '7 E A~(a3); a2,'7 are/%connected in A}. 

Now use the inductive assumption to get 

dA,[3(C~l, "7) ~- dA,~(al, a2) + dA,~(a2, "7) 

and also use the fact that  sup(c~ + A) = a + sup A (observe that  sup(A + a) may 

not be equal to sup A + a) and conclude that 

dA,~((~l, O~3) : dA,~(al, a2) + sup{dA,~(a2, '7) ~- ordtp(A~(a3) - "7) : 

a2 <_ '7 < a3;'7 E A~(a3);a2,'7 axe/~-connected in A} 

= dA,~(al,  ~2) + dA,~(a2, a3), 

which completes the proof of the fact. 
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Definition 2.14: Suppose/3 E wl. We call ( E 0) 1 a 13-number if and only if for 

every countable M -< H(w3) such that 3 r C M, we have that /3 E M, implies 

Remark 2.15: Note that/3-numbers are bounded in o;1, form an initial segment 

of wl, and finite sums of/3-numbers are/3-numbers, if/3~ </3; then/3~-numbers 

are/3-numbers. Also 0~, which is the order type of any set of ~" of rank/3, is a 

/3-number which is well defined by the homogeneity of ~-. 

FACT 2.16: For every /3 < w1 and A E [~']<~ and every a l  < a2 < w2 the 

number dA,~(al, a2) is a/3-number. 

Proof." First note that using the main lemma it is easy to conclude that if a l ,  a2 

are/3-connected in some A then (~1 E ~'~(a2). Now is easy to prove by induction 

that  

_< ordtp(7 ( 2) n <_ 

The last number is a/3-number by Remark 2.15. This completes the proof of the 

fact. 

Definition 2.17: Suppose ~1 < ~2 < Wl and ~ < Wl; we write ~1 </~ ~2 if and 

only if ~1 "~- ?] < ~2 for any/3-number 7/< Wl. 

3. Forc ing  w i t h  s ide -cond i t ions  in morasses  

In [Ko3] we introduced a version of Todor6evid's method of forcing with models 

as side conditions which utilizes elements of (semi)morasses as side conditions. 

In fact a natural way of looking at morasses is to see them as families similar to 

{M M w2 : M -< H(~3)} with some extra properties (which actually make it im- 

possible for a morass to include a club set unlike the set above). To use elements 

of a morass ~" as side conditions means to use forcings P whose conditions are of 

the form (p, A) where p is a finite condition of a natural forcing adding the struc- 

ture in question and A is a finite subset of Y. The order is given by the forcing 

order on the first coordinate and the inverse inclusion on the second coordinate. 

In addition, we require the existence of some natural projections of p onto the 

elements of A as a part of the definition of the forcing notion. 

In the case of forcings described above, special combinatorial properties of 

morasses allow us to perform many manouvers with ease and also the defini- 

tions are simplified. This method seems equivalent to the variant of Todor6evid's 

method when one employs matrices of models (see IT1] section 4 for an example 

with detailed definitions). Instead of a more complicated forcing that  adds a 



Vol. 118, 2000 STRONG CHAINS OF UNCOUNTABLE FUNCTIONS 301 

version of a morass and the structure in question "in one blow" we factor this 

forcing into one adding a morass (or we actually just assume its existence) and 

another simple forcing employing the morass. The price we need to pay for this 

convenience is that  P is not proper (unlike Todorhevi6's forcings) but only ~-- 

proper, i.e., there is a club C C [w2] ~ such that for models M -~ H(w3) such that 

M E ~" M C and p C P M M, there are (P, M)-generic conditions stronger than p. 

As ~" may be assumed to be stationary, ~--properness implies the preservation of 

wl (proof like for proper forcings, see [B2]). The preservation of bigger cardinals 

follows from the w2-chain condition. 

To illustrate the method and show the crucial use of combinatorial properties 

of a morass which is a stationary coding set, let us consider the following forc- 

ing notion P whose conditions are of the form (ap, fp, Ap) where ap E [w2] <~, 

fp: ap -+ Wl, Ap E [~-]<w and we require that fp(~) < rank(X) whenever 

oL C ap N X for X E Ap. We consider P with the coordinatewise inverse in- 

clusion as the order. 

P adds an f:  w2 --+ wl which is unbounded on any uncountable subset of w2 

belonging to the ground model. Note that such functions cannot be added by 

any c.c.c, forcing and, on the other hand, our P in a sense approximates f with 

finite approximations. As a warming up argument before the main argument of 

this paper in the next section let us prove the following facts. 

FACT 3.1: P is an .~'-proper notion of forcing and hence preserves wl. 

Proof: Let M -< H(w3) be such that X0 = M M w2 E .%-, P,~" E M. By the 

stationarity of 9 v we can easily find such an M. Let P0 E M. We will show that  

there is p < P0 which is (P, M)-generic. 

Define p as follows: ap - ~  apo , fp -~ fpo, Ap ~ - -  Apo U {X0}. Clearly p E P.  

Now to prove that p is a (P, M)-generic, consider q < p and a dense D E M. 

We may w.l.o.g, assume that q E D. 

Define ql M = (aq M M, fqlM, A q fq M).  Introduce notation ~ = M MWl = 

rank(M M w2) (the second equality follows from Fact 2.7). 

Note that  Aq M M = Aql M = { X  E Aq : X C Xo}. This follows from the fact 

that  5 r is a stationary coding set, i.e., Fact 2.6. 

Now we would like to reflect q to M, i.e., find s <_ qlM, s E M, having some 

properties of q (in particular s E D) and use these properties to prove that s and 

q are compatible, which would finish the proof of the fact. 

Condition s will satisfy a formula r with parameters from M. We will 

obtain the existence of s by the elementarity of M and the fact that  r holds 
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in H(w3). Let us write parts of the conjuction which forms r Before this, we 

need to define some parameters from M. 

Definition 3.2: 
a) Let X 1 , . . . , X m  and m E w be such that {X E Aq : rank(X) < 5} = 

(Xl, . . . ,  xm ). 
b) Let Yi = 32/M X0. (Note that Yi E M for i E [m]. This follows from Lemma 

2.8 and the main Lemma.) 

c) r  is the conjunction of the following formulas i), ii), iii): 

i) a E D .  

ii) a <_ ql M. 
iii) There is Z E ~ such that 

1) For every i E [m] we have Yi C Z, 

2) aql M C_ Z, 

3) (aa--aqiM)MZ=O. 

FACT 3.3: r holds in H(w3). 

Proof'. Clauses i) and ii) are clear and iii) is witnessed by Z = X0. 

Now we continuue the proof of the fact that P is J '-proper. Let s be such 

a condition of P that M satisfies r (usually r is much more complicated). 

We will note that  s and q are compatible by constructing their amalgamation r. 

Let ar = as U aq, f r  = fs U fq, Ar = As U Aq. The only nontrivial condition 

which we need to check is whether fr(c~) < rank(X) whenever a E a~ n X for 

X E A~. So consider c~ E aT and X E A~. There are two nontrivial cases: first, if 

a E a a - as and X E As, which cannot take place because As C M and aq - as 

is disjoint from M; the second case, if a E as - aq and X E Aq. Note that  the 

fact that  s satisfies clause iii) implies that this can happen only if rank(X) > 5, 
but f s (a)  < 5 because s E M, which completes the proof. 

FACT 3.4: P is an w2-cc notion of forcing. 

Proof: Let (p~ : ~ < w2) be a sequence of conditions of P.  We will show that  

there are two compatible conditions among the elements of this sequence. 

We may w.l.o.g, assume that for every ~ < w2 the set Ap~ has a maximal 

element denoted by X~. This follows from the directedness of .~. We may also 

w.l.o.g. ~ s u m e  that  all X~'s have the same rank a < Wl and that fx~,x~2 lifts 

up to an isomorphism between p~ and P~2 for every ~1, ~2 E w2. This follows 

from the homogeneity and local smallness of 3 c as well as from the fact that  ap~ 's 
and Ape'S are finite. Now we claim that actually any two conditions from the 

sequence are compatible. Consider two of them p, q with maximal elements Xp 
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and Xq of Ap and Aq, respectively. Put ar = ap U aq, fr = fq U fp and finally 

put A~ = A v U Aq. 

Now it is enough to check that it is a condition which follows from the 
isomorphism of p and q. 

As a corollary we obtain the following 

FACT 3.5: P preserves cardinals. 

4. Forcing construction 

will denote an (Wl, 1)-morass which is a stationary coding set. 

Definition 4.1: We define forcing notion P. Conditions p of P are of the form 

p = (av, bp, Fp, Ap), 

where 0 e ap �9 [w2]<~,bp �9 [wl] <~, Ap �9 [~]<~, Fp -= {f~ : a �9 ap}, and 
f~: bp --+ Wl, and for each/~ �9 bp we have fo(fl) = 0 and 

*) Vfl �9 bp Va eap  f~ (fl) is a/~-number; 

**) V~ �9 bp VO~ 1 < Ot2; Otl,Ol 2 �9 ap, if dAv,/~(al,a2 ) ~ 0, then 

f~2(13) >_ fpl(fl) + dA~,~(al,a2), 

p < q if and only if ap D aq, bp D_ bq, AB D Aq, f~ D_ f~ for all a E aq; and 

***) V~ e bp - bq Val < ot2;O~l,Ot2 �9 aq fp2(~) > fp,(~).  
Recall Shelah's notion of (P, M)-generic condition (see [B2]): p E P is called a 

(P, M)-generic if and only if for every D E M which is dense in P we have that  
D M M is predense below p. Most of this section is devoted to the proof of the 

following 

STATEMENT 4.2: Suppose P,J:,p E M; M -~ H(w3);M V~w2 E .~. Then for any 
p E P M M the condition Po = (ap, bp, Fp, Ap U {M M w2}) is a (P, M)-generic 
which extends p. 

Proo~ Take q < Po, D E M dense in P. We may w.l.o.g, assume that  q E D. 

Define qlM = (aqMM, bqMM, {f~iM : a e aqMM},AqMM). Introduce notation 

5 = M M wl = rank(M M w2) (the second equality follows from Fact 2.7). 

Xo = M M w2 E Y (the membership follows from the assumption). 

Note that  Aq M M = Aq[ M -- {X E Aq : X E M, X C Xo}. This follows from 

the fact that  ~" is a stationary coding set, i.e., Fact 2.6. Also as *) is satisfied for 

q E P, we may conclude that  f~M(~) E M, for fl, a E M. 
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Clearly by the above we have that q]M E M. Now let us see that q[M E P. 
For this, the only nontrivial clause of Definition 4.1 which needs to be checked is 

**). I f f l  E bqiM, O~l,OZ2 E aql M and dA~l~,~(al,a2 ) ~ O, then dA~,~(al,a2) ~ 0 
by Fact 2.12. Now as Aq[ M C_ Aq we have (AqlM)~(a) C_ (Aq)~(o0, so it is easy to 

prove by induction tha t  dAqlM,~ (oq, oe2) _< dAq,r (Oil, ol2) and consequently that  

= f l.(fl) + > + dAo, ,e(-1, 

which completes the proof that **) holds for q[M and so that q[M is a condition 

of P. 

Now we would like to reflect q to M, i.e., find s <_ q[M, s E M, having some 

properties of q (in particular s E D), and use these properties to prove that  s 

and q are compatible, which would finish the proof of the statement. 

Condition s will satisfy a formula r with parameters from M. We will 

obtain the existence of s by the elementarity of M and the fact that r holds 

in H(w3). Let us write parts of the conjuction which form r Before this we need 

to define some parameters from M. 

Definition 4.3: 

a) Let X1 , - . . ,Xm and m E w be such that {X E Aq : rank(X) < (~} -- 

,xm). 
b) Let ri ----- rank(Xi) for i E [m]. 

c) Let Y~ -- Xi M X0. (Note that  Y/ E M for i E [m]. This follows from Lemma 

2.8 and the main Lemma.) 

d) Let ~o -- m a x { r l , . . . ,  rm, max(balM) + 1}. 

e) Let {~l,.--,~t} = ( % -  M) M (supMMw2). 

f) Let ~i = min(M - ~i) for i E [/]. 

g) Let vj = max({sup(Y~ M ~j) : i E [m]} for j E [/]. (Note that as Y/'s are 

countable in H(w3) and they belong to M, they are countable in M, and so vj's 

are in M and they are smaller than corresponding ~?j's.) 

h) r is the conjunction of the following formulas i), ii), iii): 

i) a E D; 

ii) a <_ qlM; 
iii) there is Z E Aa,rank(Z) > flo such that: 

1) for every X E A~ such that rank(X) </30 there is i E [m] X M Z = Y/, 

2) for every i E [m] there is X E A~ such that rank(X) _< flo and X n Z  = Yi, 
3) aq] M C Z, 
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4) - n Z = 0,  

5) (b~ - bqiM ) M (rank(Z)) = 0, 

6) for all j E [/] we have vj, ~?j E Z and there is Cj E Z such that  

and 

0 o dtp(Z n 

FACT 4.4: r holds in H(w3). 

Proof: Clause i) is clear from our assumption on q. 

To see ii) first note that  we have already proved that  qlM is a condition of P. 

We need to check only ***). So let fl E bq - bq[M, O~l,OL2 E aqiM. As Xo E Aq 

and 5 </~, by **) for q we conclude from Fact 2.13 2) that  

f ~M(~)  >-- f~M(~)  + ordtp(Xo M [a~, a2)) > f ~ ( ] 3 )  

as required in ***). 

For iii) we claim that  Z = X0 witnesses iii) for q. The subclauses 1)-5) are 

clear. To see that  6) holds, take a E aq - aqiM -= aq -- M such that  a < sup(M).  

Then there is j E [/] such that  a = ~j. M M yj is bounded in ~?j by ~j and so there 

is no cofinal in ~?j countable sequence included in M, hence ~?j has uncountable 

cofinality in M. Also vj E M and vj < ~j. So take, e.g., ~j = vj + a t where a ~ 

is any countable ordinal in M which is bigger than all ~0-numbers (the existence 

of such a number follows from the elementarity of M). 

So now, using the elementarity of M, find s such that  s E M and r holds in 

M. Now our aim is to prove that  s and q are compatible in P. So we need to define 

r < s, q. We put a~ = asUaq, b~ = bqUbs, Ar = AsUAq, f~ (~ )  = f~ (~ )  for a E as, 

fl E 58, f~(f~) ---- f~(fl)  for a E aq, t3 e b a (these agree on the common part  qlM) 

and we need to define f~(f~) for (a ,~} E (a~ -aq )  x ( b q - b s ) U ( a q - a s )  • (b~-bq)  

which is the only freedom we have in defining the extension r. 

For a E a8 - aq, fl E bq - b8 we define f~(f~) separately for each f~ E bq - b8 

and by induction. Suppose that  we have already defined it for (a~ - aq) M a for 

a E as - aq; then we put 

D1) f~(13)----max{f~'  ( j3 )+dAr ,~ (a ' ,a )  :dAr,/3(a' ,a) r  a'  e a ~ n a } .  

Note that  by Definition 4.1, we have always a t -- 0 E a r  and also 0, a E X0 and 

so dAr,f~((~ I, ~) ~> 0 for some a ~ E a~ M a.  
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For c~ E aq - a~, D E b~ - bq we define f~(D) separately for each D E b~ - bq 
and by induction. Suppose that  we have already defined it for (aq - as) M a for 

a E aq - a s ;  then we put f~(D) to be the maximum of the following two numbers: 

D2) m a x { f f  (D)-bdA~,~(a',a):dAr,~(a',a)r a' E arN a} ,  

D3) m a x ( f f  (D) + 1: a '  E aq M a}. 

Now we need to prove that r is a condition of P which extends both s and q. 

The only nontrivial clauses of Definition 4.1 to be checked are *), **) and ***). 

In the sequel we will refer to these clauses as simply *), **) and ***). Before 

moving to the following parts of the proof of Statement 4.2, we will prove some 

lemmas. 

LEMMA 4.5: Suppose ot 1 < a2 < w2; D <: Wl;a l ,a2 ,D E M. Then al,a2 are 
D-connected in A8 if and only if ax, a2 are D-connected in At. 

Proo~ Let W1,. . . ,Wk,  71 , . . . , 7k  he as in Definition 2.9, witnessing the fact 

that  ot1, O~2 are D-connected in At. Since a2 E M and D E M M w2 E ~', by the 

main lemma and the fact that s satisfies clause 4.3 h) iii) 1)-2) of r we conclude 

that all 7i's are in M and there are V~ E A8 such that  V~ M 7i = Wi M 7i and 

7i ~ V~ and rank(Vj) = rank(Wj). It follows that O~1,a2 are D-connected in As. 

The opposite implication is clear as A~ C_ At. 

LEMMA 4.6.: Suppose O~ 1 < Ol 2 < W2; D E bs M bq ,  a2 E (032 - M) U Z. Then 
a l ,  a2 are D-connected in Aq if and only f f a l ,  a2 are D-connected in Ar. 

Proof." Let W1, . . . ,  Wk, ~ ' l , . . . ,~k be as in Definition 2.9, witnessing the fact 

that  a l ,  ct2 are D-connected in A~. If there is no i such that O'i E M, then all 

Wi's are not in M and so are in Aa, which proves that al,a2 are D-connected 

in Aq. If a2 E Z, then an argument similar to the one from the proof of 4.5 

works. Otherwise take maximal i such that ")'i E M and assume a2 ~ Z. By the 

maximality and the fact that a2 r M, Wj E Aq - A8 for j _> i. So, we conlude 

that  ~h E Z. By the main lemma and the fact that rank(W~) _< D E bqMb8 < Do < 
rank(Z) (see 4.3 d)) we conclude that all "rj's for j < i are in Z. By clause 4.3 

h) iii), 1)-2) this means that  there are V/E Aq such that Vj n 3'j = Wj M ~,j and 

7j e Vj and rank(Vj) = rank(Wj). This implies that a l  and a2 are D-connected 

in Aq. 

Again as Aq C_ At, the opposite implication is clear. 
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LEMMA 4.7: Suppose a l  < a2 < w2; 5 <_ fl < wl. Then c~1,a2 are t3-connected 
in Aq if and only i f  a l ,  a2 are fl-connected in A~. 

Proof: Let W1, . . . ,Wk,  3'1,...,3'k be as in Definition 2.9, witnessing the fact 

that  a l ,  a2 are ~-connected in A~. As s E M, we have Wi C_ X0 = M M w2 E Aq 

for Wi E A~. Thus by replacing Wi's from A~ - Ag -- As - Aq by Xo we obtain 

that  ax, a2 are j3-connected in Aq. 

Again as Aq C_ A~, the opposite implication is clear. 

LEMMA 4.8: Supposes < w2;~ < Wl;a,13 E M. Then 

(Ar)~(a) = (As)~(a). 

Proof (see Definition 2.9): If X E A t - A s  and rank(X) < 6, then rank(X) < fl0. 

I f a  E X,  then by 4.3 h) iii) 1)-2), there is Y E A8 such that  Y M M  = X M M  and 

so Y Q a = X M a by the main lemma. This proves that  (Ar)fl(a) C_ (As)~(a). 
The other inclusion is clear. 

LEMMA 4.9: Suppose a < w2; fl E bq M bs and a E (w2 - M) U Z. Then 

(A~)z(a) = (Aq)~(a). 

Proof: Note that  fl < fl0 (by 4.3 d) and by 4.3 h) iii) 1)-2)), for each X E As of 

rank less than or equal to fl such that a E X (in this case a E Z, as As E M) there 

is Y E Aq of the same rank such that a E Y, and hence (A,)~(a) C_ (As)~(a). 
The other inclusion is clear. 

LEMMA 4.10: Suppose a < w2;6 < fl < Wl. Then 

(A~)~(a) = (Aq)~(a). 

Proof: Note that  any X E A~ - Aq is in As and so is included in X0 E Aq and 

so (A,)~(a) C_ (Aq)~(a). The other inclusion is clear. 

LEMMA 4.11: Suppose al < ~2 < w2;fl < wl;al ,a2,f l  E M. Then 

dA~,~(al, a2) = dA,,~(C~l, a2). 

Proof: By induction on a2. Suppose the equality is true for pairs of ordinals 

from w2 with the bigger ordinal less than a2. Note that  by Lemma 4.8 and the 

assumptions we have that  (Ar)~(a2) C M, so by Lemmas 4.8 and 4.5 the set 

{q' :3' E (Ar)~(a2) & al ,3 '  are/~-connected in At} 
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is equal to the set 

{7 : 7 E (A~)~(a2) & a l , 7  are fLconnected in As}. 

Also for 7's from the above set by the inductive assumption and Lemma 4.8 we 

have 

dAr,~(al, 7) + ordtp((Ar)~(a2) - 7) = dAs,~(al, 7) + ordtp((As)~(a2) - 7). 

Now using Definition 2.9 we conclude the statement of the lemma. 

LEMMA 4.12: Suppose al < a2 < w2;/~ E bq I-1 bs; a2 E (~2 - M) U Z. Then 

dA~,~(al, a2) = dA~,~(al, a2). 

Proof." By induction on a2. Suppose the lemma is true for pairs of ordinals from 

w2 with the bigger ordinal less than a2. Note that (Ar)~(a2) C_ (w2 - M) U Z, 

so by Lemmas 4.9 and 4.6 the set 

{7 : 7 E (A~)~(a2) & a l ,  7 are/3-connected in A~} 

is equal to the set 

{7 : 7 E (Aq)~(a2) & a l , 7  are E-connected in Aq}. 

Also for 7's from the above set, by the inductive assumption and Lemma 4.9 we 

have 

dAr,f3(al, 7) + ordtp((Ar)/3(a2) - 7 )  = dAq,f~(al, 7) + ordtp((Aq)~(a2) - 7 ) .  

Now using Definition 2.9 we conclude the statement of the lemma. 

LEMMA 4.13: Suppose a l  < a2 < w2; 5 <_ j3 < wl. Then 

dA~,/3(OZl, Or2) = dAq,B(OZl, Or2). 

Proof'. By induction on a2. Suppose the equality is true for pairs of ordinals 

from w2 with the bigger ordinal less than a2. Note that by Lemmas 4.10 and 4.7 

the set 

{ 7 : 7  E (A~)z(a2) & a l , 7  are E-connected in A~} 

is equal to the set 

{7 : 7 E (Aq)/?(ot2) • (::Zl, 7 are j3-connected in As}. 

Also for 7's from the above set by the inductive assumption and Lemma 4.10 we 

have 

dA,,/3(al, 7) + ordtp((Ar)B(a2) - 7) = dAq,#(al, 7) + ordtp((Aq)#(a2) - 7). 

Now using Definition 2.9 we conclude the statement of the lemma. 
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LEMMA 4.14: Suppose al  < ol2 < w2. ~f /3 < 5 and oL 1 E aq -- a8 and a2 E as, 

then al ,  a2 are not ~3-connected in At .  

Proof: Suppose the opposite. Let W1, . . . ,  Wk, 71,...,'Yk be as in Definition 2.9, 

witnessing the fact that a l ,  a2 are/3-connected in A~. It follows from the main 

lemma that a l  E (~')~(a2) C M. But this contradicts the fact that a l  ~ M. 

LEMMA 4.15: Suppose al  < a2 < w2. If~3 E bs M bq and al  E as - aq and 

a2 E aq -- as, then a l , a2  are not ~3-connected in A~. 

Proof: Suppose the opposite. Let W 1 , . . . ,  Wk, "Yo,... ,'Yk be as in Definition 2.9, 

witnessing the fact that a l ,  a2 are/3-connected in At. Note that  if 7i r M, then 

Xi ~ M and so Xi E Aq - As and consequently rank(Xi) </3o. 

Take maximal i such that ")'i E M. As a l  = "h E M and a2 r M, we have that 

such an i exists and Xi r M as Xi contains the next element in the sequence 

~/1,..., ")'k, a2 after "),~. Now this implies that ~/i E Z, which in turn implies by the 

main lemma that all "yj for j < i are in Z as well. In particular a l  E Z, which 

contradicts the choice of a l  and 4.3 h) iii) 4). 

LEMMA 4.16: Suppose that a l  < a2 < w2, a l ,a2  ~ M and /3 < 5. Then 

dA,,~(al,  a2) ---- dA~,~o (al ,  a2). 

Proof." First note as in the proof of Lemma 4.14 that if a t  < 7 and al, ') '  are 

/3-connected then ~/r M. Secondly, note that this implies that if W1, . . . ,  Wk, 

")'0,... ,')'k are as in Definition 2.9, witnessing the fact that a l ,  ~/are/3-connected 

in A~, then all "),~s are not in M and all X~s are not in M and consequently 

rank(Xi )  < /30 for all i 5 k by 4.3 a), b), d). In other words al, ') '  are /3- 

connected in Ar if and only if a l ,  "y are/3o-connected in A~. Now the proof is by 

induction on a2 ~ M. Using Definition 2.11 we have 

dAr,~(al, a2) = sup{dAr,f~(al,'y) + ordtp((Ar)f~(a2) - ~/): 

a l  ~ ")' < a2;')' E (Ar)~(a2);al , '~ are/3-connected in At}. 

Using the inductive assumption and the fact that (A,)~(a2) = (A~)~o(a2) (this 

follows again from 4.3 a), b), d)) this number is clearly equal to 

sup{dA~,f~0 (Otl, 7) + ordtp((Ar)f~o (a2) - 7 ) :  

a l  _< ")' < a2; ~' E (Ar)f~(a2); a l , 'y  are/30-connected in At}, 

which is dA~,~o (Oil, a2). 
Now we are ready to start proving the main part of 4.2. So let's start with 

*). It follows from the definition of far(/3)'s (see D1), D2), D3)) and the fact 
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that  dA~,~(a', ~) is a f~-number (see Fact 2.15) and finite sums of ~-numbers are 

~-numbers (see Remark 2.16). 

So now let us check **). For this we will need to consider many cases. 

CASE 1: ~ E bq M bE. 

CASE 1.1: ~ E b q M b s a n d a l , a 2 E a s o r a l , ( ~ 2 E a q .  

This follows from the fact that  s and q are conditions of P and from Lemmas 

4.11 and 4.12. 

CASE 1.2: fl E bqMbs and o~ 1 E a s - a q ,  a2 E a q - a s  or a l  E a q - a s ,  a2 E a s - a q .  

This follows from Lemmas 4.14 and 4.15. 

CASE 2: ~ E bs - bq. 

CASE2.1: fl E b s - b q ,  C~l < c~2; cq,ct2 E as. 

This follows from Lemma 4.11 and the fact that s is a condition of P.  

CASE 2.2: t3 E bs - bq, o~1 < (~2; o~2 E aq - as. 

It follows from the construction (see D2)) of f r  ~2 (j3). 

CASE2.3: /3 E b s - b q ,  a l  < a2; a l  E a q - a s , a 2  E as. 

This follows from Lemma 4.14. 

CASE 3: f~Ebq-bs. 

CASE3.1: ~ E b q - b s ,  a l < a 2 ;  a l , a 2 E a q .  

This follows from Lemma 4.13 and the fact that q is a condition of P.  

CASE 3.2: ~ E bq - bs, a l  < a2; a2 E a~ - aq. 

This case follows from the construction of f r  ~ (f/). 

CASE 3.3: f~ E bq -- bE, a l  < a2; a l  E as -- aq; a2 E aq. 

Suppose that  we have proved **) for all a ~ E (aq U as) M oq and a2 and ~. We 

may w.l.o.g, assume that  ~1 and c~2 are ]~-connected in AT. 

Note that  f r  ~ (]~) is defined according to the construction (see D1)), i.e., 

ar 0~ ! N 0/1}. fra' (/~) = ma, x{ f~ ( j 3 ) - t - d A , , ~ ( a ' , a l ) : d A , , r  e a r  

Note that' the above set of a 's  is nonempty as 0 is its member since 0, a l  E X0. 

So let a '  be the ordinal giving the maximal value which gave f r  al (~). By the 

inductive assumption we have 

i Ot S~(~) ___ S~'(~) +dA~,~(~, 2). 
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As cd and s l  as well as Sl and s2 are/3-connected in Ar it follows from Lemma 

2.13 (3) that  

dA, , : (a ' ,  Sl) + dA.,/~(sl,  s2) = dA. ,~(s ' ,  s2) 

and so 
fra~ (/3) >_ f~ '(~) + dA~,/~(a',s2) 

= + s l )  + da , (Sl, s2) 

= + dA , (sl, s2) 

as required in **). 

So now we need to check ***). 

CASE 1: fl E bq - bs, a l  < s2; S l , S 2  E as.  

Note that  in this case we have s l , s ~  e Xo and so ***) follows from **). 

CASE2: / ~ E b s - b q ,  s l  < a 2 ; c ~ l , a 2 e % .  

CASE 2.1: /3 E bs - b e, s2 E aq - as, a l  < s2. 
This case follows directly from the construction of f ~  (/~) (see D3)). 

CASE 2.2: 13 E bs - bq, a2 ~ aq n as and ~l  E a~ n a a and s l  < o~2. 

Note that  then s l , s 2  E Z and Z E As and r a n k ( Z )  </~  (by 4.3 5)) as well as 

a l ,S2 e as, and so as in case 1, we conclude ***) from **) for s. 

CASE 2.3: ~ E bs - b e, Sl < s2, a2 E aq N as and s l  E aq - as. 

For this case, we will prove by induction on s0 E aq, so <_ a l  that 

(see Definition 2.17). Certainly for C~o -- ch this will be sufficient for proving the 

case .  

Let j e [/] (see Definitions 4.3 e)) be such that  c~1 = ~j. It  exists because 

Sl < a2 e M. Then clearly uj < ~j < ~j < ~/j < s2 (see 4.3 f), g), h) iii) 6)). 

Suppose we are done below s0. 

If c~o E aq N as C Z,  then note that  by the definition of vj we have c~o < vj, as 

So < Sl, and so by Fact 2.13, 2) and Definition 4.3 h) iii) 6) we have 

dA,,:~(So,s2) >_ o r d t p ( Z N  [s0,s2)) _> o r d t p ( Z N  [uj, Cj)) >/~o 0. 

Now use **) for r and Lemma 4.11 to conclude that  f~o(/~) </3o f~2(/3)" 

Now assume that  so E aq - a, .  In this case f~o (/~) has been defined according 

to the construction, i.e., D2), D3), f~~ is the maximum of the following two 

numbers: 

max{/~'(13) + dA~,i3(a',So): dA~,/3(s' ,so) r 0 : s '  e a r  n so}, 
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m a x { f f  (/3) + 1: a' E aq M a}. 

If this is the second number, the inductive assumption and Remark 2.15 imply 

that f~o(fl) <Zo f~2. 

So we will assume that f~o (/~) is the first and not the second of the two above 

numbers. Note that as 0 E aq M ao C_ Xo, the fact that the first number is bigger 

than the second means that the first one is a nonzero number and in particular, 

by Fact 2.12, that a ~ and ao are t3-connected in At. 

First assume that a ~ r M i.e, a ~ g as; then by Lemma 4.16 we conclude that  

dA~,~(o/, So) equals dAr,~o (a', a0) and by Fact 2.16 this number is a ~o-number, 

so the inductive assumption implies f~o (fl) <~o f~2 (~). 

Now assume that a ~ E as. Let 70 be the minimal ordinal such that a ~ < "to _< 

So, 70 r M and both a~,7o and ")'o,ao are j3-connected in At. The existence of 

such a 70 follows from the fact that so has the above property. 

By Fact 2.13 3) and Lemma 4.16 we have that 

+) dAr,~(a', so) = dAr,~(a', "YO) + dA~,~(~/O, SO) = dA~,~(a', ~/0) + dA~,~o (~/o, so). 

Now Lemma 2.16 implies that the ordinal dA~,~o('Yo, so) is a j3o-number. So we 

will focus on estimating dA~,~(a ~, "YO). 
By Definitions 2.9, 2.11 and the definition of/30 (see 4.3 a), b), d)) we have 

dA~,B(a',~/o) <~ sup{dA~,~(a',7) + ~o : 

a '  < 7 < 3'0;7 E (A~)~(70);a',7 are/3-connected in At} 

where 0~o is the order type of elements of ~" of rank flo. 

Now note that  by the minimality of 7o we have that whenever 7 is such that 

a '  < 3' < 70;')' E (A,)~(70);a ' ,7 are ~-connected in A~, we have that 3' E M 

(remember that by now we are assuming that a ~ E M, so case a '  = 7 follows) 

and actually 7 E Y for this Y E Aq - As that (Ar)/~(7o) = (Ar)/3o (7o) = Y n 70. 

It follows that  for such a "r we have "r < vj < Cj and 7 E Z and in particular 

"), E A~(~3). It follows that a ' , ~  are/~-connected in A~ (by 4.3 h) iii) 5)) and 

that  

++) dAr,~(a', uj) + 6~o = sup{dAr,~(a', 7) + ordtp((Ar)z(uj) - 7) : 

a '  < "), < uj; 7 E (Ar)~(uj);a' ,7 are fl-connected in At} +0~o _> dAr,~(a', 7o). 

Now, as uj < ~j < a2 are all in Z, by Fact 2.13 and Lemma 4.3 h) iii) 6) we have 

+ + -b) dAr,~(vj, ~2) ~ dAr,13(vj, Cj) >_ ordtp(Z n [vj, Cj)) >f~o 0. 
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Since a ' ,  L,j are/~-connected as noted above and +), ++ )  and + + + )  hold we 

obtain that  

dA~,B(a', a2) = dA~,Z(a', vj) + dA~,~(~'j, a2) >~o dA~,t~(a, ' vj), 

dA,,~( a', aO) <_ dA~,~(a', vj) + ~o + dA~,Zo ('Yo, ao), 

which completes the proof of the case and Statement 4.2. 

FACT 4.17: P preserves wl. 

Proos It follows from Statement 4.2 as .T-proper forcings preserve Wl, the proof 

of this fact is the same as for proper forcings; see, e.g., [B2]. 

FACT 4.18: P satisfies the w2-c.c. 

Proof: Let (p~ : ~ < w2) be a sequence of conditions of P. We will show that 

there are two compatible conditions among the elements of this sequence. 

We may w.l.o.g, assume that  for every ~ < w2 the set Ape has a maximal 

element denoted by X~. This follows from the directedness of .T. We may also 

w.l.o.g, assume that  all X~'s have the same rank a < Wl and that  fx~l ,x~2 lifts 

up to an isomorphism between P~I and P~2 for every ~1, ~2 E w2. This follows 

from the homogeneity and local smallness of 9 v as well as from the fact that the 

ap~ 's, bp~ 's, Fp~ 's and Ap~ 's axe finite. We can also assume that  all bp~ 's are the 

same and are equal to b. 

Now we claim that  actually any two conditions from the sequence are compat- 

ible. Consider two of them p, q with maximal elements Xp and Xq of Ap and Aq, 
respectively. Put  an = apUaq, b~ = b, Fr = FqUFp and finally put Ar = ApUAq. 

Now it is enough to check that r is a condition which follows from the isomor- 

phism of p and q. For this note that unless (a~,a2) E[an] 2 is already in one of 

the sets [ap] 2 or [aq] 2, it is not/3-connected in An for any/~ E b. It follows that  

**) is trivially satisfied. Also ***) holds trivially as bq = bp = b~ = b. 

FACT 4.19: P preserves cardinals. 

FACT 4.20: For all a E w2 and all/~ <E wl the following sets are dense in P ,  

D~,~ = {p E P :  max(ap) > a, max(bp) > fl}. 

Proof: To make the check that the extension is in P a triviality, given q E P 

and a E w2 and 13 E wy define p as follows: ap = aq U {ao}, bp = bq U {~o}, 

A v = Aq where ao > a is such that  ao > sup( U Ap) and ~o > ~ is such that  

fl > max({rank(X) : X E Ap},max(bq)). Now define fff'(/~) for a '  E aq so that  
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**) and ***) are satisfied, which can be easily done by induction and making 

sure that  the appropriate values are r/0-numbers; f~o (/3) can be arbitrary as long 

as *) is satisfied. 

This completes the proof of Theorem 1.1. 

Remark 4.21: Note that  it was in the proof of Case 2.3 of ***) that  we essentially 

needed the notion d~(al ,a2)  of ri-distance between al ,a2  E w2 different than 

ordtp(X N (al,  a2]) for X E ~" of rank ri such that  a l ,  a2 E X. With the ri- 

distance as above we could have d~(0,al)  = d~(0,a2) and fa2(ri) = fo(ri) + 

dz(0,a2), which by D2) would imply f~l(ri) > f~2(ri), which would give that  r 

is not an extension of q. Note that  the distance as above may exist under CH (as 

morasses which are stationary codings exist in L), so Theorem 1.2 explains why 

the situation as above must occur. Actually, the proof of 1.2 is derived from the 
above counterexample to 2.3. 

It would be interesting to axiomatize the other distance that we use as well as 

associated colorings of pairs from w2 into wl colors. This could lead to obtaining 

stronger properties than these usually listed for p (see IT2]). 
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